Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Sustained increase in α5GABAA receptor function impairs memory after anesthesia
Agnieszka A. Zurek, … , Eric W.R. Salter, Beverley A. Orser
Agnieszka A. Zurek, … , Eric W.R. Salter, Beverley A. Orser
Published November 3, 2014
Citation Information: J Clin Invest. 2014;124(12):5437-5441. https://doi.org/10.1172/JCI76669.
View: Text | PDF
Brief Report Neuroscience

Sustained increase in α5GABAA receptor function impairs memory after anesthesia

  • Text
  • PDF
Abstract

Many patients who undergo general anesthesia and surgery experience cognitive dysfunction, particularly memory deficits that can persist for days to months. The mechanisms underlying this postoperative cognitive dysfunction in the adult brain remain poorly understood. Depression of brain function during anesthesia is attributed primarily to increased activity of γ-aminobutyric acid type A receptors (GABAARs), and it is assumed that once the anesthetic drug is eliminated, the activity of GABAARs rapidly returns to baseline and these receptors no longer impair memory. Here, using a murine model, we found that a single in vivo treatment with the injectable anesthetic etomidate increased a tonic inhibitory current generated by α5 subunit–containing GABAARs (α5GABAARs) and cell-surface expression of α5GABAARs for at least 1 week. The sustained increase in α5GABAAR activity impaired memory performance and synaptic plasticity in the hippocampus. Inhibition of α5GABAARs completely reversed the memory deficits after anesthesia. Similarly, the inhaled anesthetic isoflurane triggered a persistent increase in tonic current and cell-surface expression of α5GABAARs. Thus, α5GABAAR function does not return to baseline after the anesthetic is eliminated, suggesting a mechanism to account for persistent memory deficits after general anesthesia.

Authors

Agnieszka A. Zurek, Jieying Yu, Dian-Shi Wang, Sean C. Haffey, Erica M. Bridgwater, Antonello Penna, Irene Lecker, Gang Lei, Tom Chang, Eric W.R. Salter, Beverley A. Orser

×

Full Text PDF | Download (905.71 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts