Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Loss of P2Y14 results in an arresting response to hematological stress
Brian S. Garrison, Derrick J. Rossi
Brian S. Garrison, Derrick J. Rossi
Published June 17, 2014
Citation Information: J Clin Invest. 2014;124(7):2846-2848. https://doi.org/10.1172/JCI76626.
View: Text | PDF
Commentary

Loss of P2Y14 results in an arresting response to hematological stress

  • Text
  • PDF
Abstract

The regenerative capacity of tissues to recover from injury or stress is dependent on stem cell competence, yet the underlying mechanisms that govern how stem cells detect stress and initiate appropriate responses are poorly understood. In this issue of the JCI, Cho and Yusuf et al. demonstrate that the purinergic receptor P2Y14 may mediate the hematopoietic stem and progenitor cell regenerative response.

Authors

Brian S. Garrison, Derrick J. Rossi

×

Figure 1

HSPCs lacking P2Y14 have reduced functionality.

Options: View larger image (or click on image) Download as PowerPoint
HSPCs lacking P2Y14 have reduced functionality.
Competitive transplantat...
Competitive transplantation of WT and P2Y14-deficient HSPCs into an irradiated animal results in equal repopulation of the hematopoietic environment. Following blood reconstitution, P2y14–/– HSPCs exhibit a competitive disadvantage if mice are exposed to additional hematological stress, such as irradiation or serial transplantation. Furthermore, in response to stress, P2Y14-deficient HSPCs show several markers of senescence, including increased ROS, p38 MAPK, p16INK4A, and SA–β-gal.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts