Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells
Di Zhao, … , Kun-Liang Guan, Qun-Ying Lei
Di Zhao, … , Kun-Liang Guan, Qun-Ying Lei
Published November 10, 2014
Citation Information: J Clin Invest. 2014;124(12):5453-5465. https://doi.org/10.1172/JCI76611.
View: Text | PDF
Research Article Oncology

NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells

  • Text
  • PDF
Abstract

High aldehyde dehydrogenase (ALDH) activity is a marker commonly used to isolate stem cells, particularly breast cancer stem cells (CSCs). Here, we determined that ALDH1A1 activity is inhibited by acetylation of lysine 353 (K353) and that acetyltransferase P300/CBP–associated factor (PCAF) and deacetylase sirtuin 2 (SIRT2) are responsible for regulating the acetylation state of ALDH1A1 K353. Evaluation of breast carcinoma tissues from patients revealed that cells with high ALDH1 activity have low ALDH1A1 acetylation and are capable of self-renewal. Acetylation of ALDH1A1 inhibited both the stem cell population and self-renewal properties in breast cancer. Moreover, NOTCH signaling activated ALDH1A1 through the induction of SIRT2, leading to ALDH1A1 deacetylation and enzymatic activation to promote breast CSCs. In breast cancer xenograft models, replacement of endogenous ALDH1A1 with an acetylation mimetic mutant inhibited tumorigenesis and tumor growth. Together, the results from our study reveal a function and mechanism of ALDH1A1 acetylation in regulating breast CSCs.

Authors

Di Zhao, Yan Mo, Meng-Tian Li, Shao-Wu Zou, Zhou-Li Cheng, Yi-Ping Sun, Yue Xiong, Kun-Liang Guan, Qun-Ying Lei

×

Figure 6

NOTCH activates ALDH1A1 by inducing deacetylation.

Options: View larger image (or click on image) Download as PowerPoint
NOTCH activates ALDH1A1 by inducing deacetylation.
(A–C) NOTCH signaling...
(A–C) NOTCH signaling promoted SIRT2 expression, decreased K353 acetylation, and activated ALDH1A1. FLAG-tagged ALDH1A1 was expressed in 293T cells, followed by treatment with (A) DAPT (an inhibitor of NOTCH) and (B) DLL4 (extracellular ligand for activating the NOTCH pathway) for 24 hours, or (C) 293T cells were cotransfected with FLAG-ALDH1A1 and FLAG-NICD1 (NOTCH1 intracellular domain, activated NOTCH1) plasmids. ALDH1A1 was purified by IP, followed by enzyme assay and Western blotting with the indicated antibodies. (A–C) Enzymatic activity was measured and normalized to protein levels, and relative enzyme activity data represent the mean ± SD of triplicate experiments. (D and E) The NOTCH signaling pathway increased SIRT2 and decreased endogenous ALDH1A1 K353 acetylation of breast cancer cells. MDA-MB-468 cells or primary breast cancer cells were treated with DAPT or DLL4 for the indicated durations. Endogenous NICD1, PCAF, SIRT2, and ALDH1A1 protein levels and K353 acetylation were determined by Western blotting.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts