Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Canonical WNT signaling components in vascular development and barrier formation
Yulian Zhou, … , Makoto M. Taketo, Jeremy Nathans
Yulian Zhou, … , Makoto M. Taketo, Jeremy Nathans
Published August 1, 2014
Citation Information: J Clin Invest. 2014;124(9):3825-3846. https://doi.org/10.1172/JCI76431.
View: Text | PDF
Research Article Vascular biology

Canonical WNT signaling components in vascular development and barrier formation

  • Text
  • PDF
Abstract

Canonical WNT signaling is required for proper vascularization of the CNS during embryonic development. Here, we used mice with targeted mutations in genes encoding canonical WNT pathway members to evaluate the exact contribution of these components in CNS vascular development and in specification of the blood-brain barrier (BBB) and blood-retina barrier (BRB). We determined that vasculature in various CNS regions is differentially sensitive to perturbations in canonical WNT signaling. The closely related WNT signaling coreceptors LDL receptor–related protein 5 (LRP5) and LRP6 had redundant functions in brain vascular development and barrier maintenance; however, loss of LRP5 alone dramatically altered development of the retinal vasculature. The BBB in the cerebellum and pons/interpeduncular nuclei was highly sensitive to decrements in canonical WNT signaling, and WNT signaling was required to maintain plasticity of barrier properties in mature CNS vasculature. Brain and retinal vascular defects resulting from ablation of Norrin/Frizzled4 signaling were ameliorated by stabilizing β-catenin, while inhibition of β-catenin–dependent transcription recapitulated the vascular development and barrier defects associated with loss of receptor, coreceptor, or ligand, indicating that Norrin/Frizzled4 signaling acts predominantly through β-catenin–dependent transcriptional regulation. Together, these data strongly support a model in which identical or nearly identical canonical WNT signaling mechanisms mediate neural tube and retinal vascularization and maintain the BBB and BRB.

Authors

Yulian Zhou, Yanshu Wang, Max Tischfield, John Williams, Philip M. Smallwood, Amir Rattner, Makoto M. Taketo, Jeremy Nathans

×

Figure 9

EC expression of stabilized β-catenin produces a cell-autonomous conversion of choroid plexus ECs from PLVAP+Claudin5– to PLVAP–Claudin5+.

Options: View larger image (or click on image) Download as PowerPoint
EC expression of stabilized β-catenin produces a cell-autonomous convers...
Ctnnb1flex3/+ Cdh5-IRES-MCreM mice were treated with 200 μg 4HT at P3 and analyzed at P23. Two images are shown per genotype. White arrows point to a few of the several dozen choroid plexus capillary ECs per image that have converted to a PLVAP–Claudin5+ state. Scale bar: 200 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts