Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Androgen deprivation–induced NCoA2 promotes metastatic and castration-resistant prostate cancer
Jun Qin, … , Sophia Y. Tsai, Ming-Jer Tsai
Jun Qin, … , Sophia Y. Tsai, Ming-Jer Tsai
Published October 8, 2014
Citation Information: J Clin Invest. 2014;124(11):5013-5026. https://doi.org/10.1172/JCI76412.
View: Text | PDF
Research Article Oncology

Androgen deprivation–induced NCoA2 promotes metastatic and castration-resistant prostate cancer

  • Text
  • PDF
Abstract

A major clinical hurdle for the management of advanced prostate cancer (PCa) in patients is the resistance of tumors to androgen deprivation therapy (ADT) and their subsequent development into castration-resistant prostate cancer (CRPC). While recent studies have identified potential pathways involved in CRPC development, the drivers of CRPC remain largely undefined. Here we determined that nuclear receptor coactivator 2 (NCoA2, also known as SRC-2), which is frequently amplified or overexpressed in patients with metastatic PCa, mediates development of CRPC. In a murine model, overexpression of NCoA2 in the prostate epithelium resulted in neoplasia and, in combination with Pten deletion, promoted the development of metastasis-prone cancer. Moreover, depletion of NCoA2 in PTEN-deficient mice prevented the development of CRPC. In human androgen-sensitive prostate cancer cells, androgen signaling suppressed NCoA2 expression, and NCoA2 overexpression in murine prostate tumors resulted in hyperactivation of PI3K/AKT and MAPK signaling, promoting tumor malignance. Analysis of PCa patient samples revealed a strong correlation among NCoA2-mediated signaling, disease progression, and PCa recurrence. Taken together, our findings indicate that androgen deprivation induces NCoA2, which in turn mediates activation of PI3K signaling and promotes PCa metastasis and CRPC development. Moreover, these results suggest that the inhibition of NCoA2 has potential for PCa therapy.

Authors

Jun Qin, Hui-Ju Lee, San-Pin Wu, Shih-Chieh Lin, Rainer B. Lanz, Chad J. Creighton, Francesco J. DeMayo, Sophia Y. Tsai, Ming-Jer Tsai

×

Usage data is cumulative from May 2021 through May 2022.

Usage JCI PMC
Text version 742 108
PDF 85 93
Figure 141 3
Table 12 0
Supplemental data 59 2
Citation downloads 16 0
Totals 1,055 206
Total Views 1,261
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts