Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Emerging roles for enteric glia in gastrointestinal disorders
Keith A. Sharkey
Keith A. Sharkey
Published February 17, 2015
Citation Information: J Clin Invest. 2015;125(3):918-925. https://doi.org/10.1172/JCI76303.
View: Text | PDF
Review Series

Emerging roles for enteric glia in gastrointestinal disorders

  • Text
  • PDF
Abstract

Enteric glia are important components of the enteric nervous system (ENS) and also form an extensive network in the mucosa of the gastrointestinal (GI) tract. Initially regarded as passive support cells, it is now clear that they are actively involved as cellular integrators in the control of motility and epithelial barrier function. Enteric glia form a cellular and molecular bridge between enteric nerves, enteroendocrine cells, immune cells, and epithelial cells, depending on their location. This Review highlights the role of enteric glia in GI motility disorders and in barrier and defense functions of the gut, notably in states of inflammation. It also discusses the involvement of enteric glia in neurological diseases that involve the GI tract.

Authors

Keith A. Sharkey

×

Figure 1

Schematic representation of the distribution of enteric glia in the GI tract.

Options: View larger image (or click on image) Download as PowerPoint
Schematic representation of the distribution of enteric glia in the GI t...
Subpopulations of enteric glia are located around all classes of neurons in the myenteric and submucosal plexuses and in the mucosa. In the mucosa, enteric glia lie below the epithelium and connect to the “neuropod” of enteroendocrine cells (EECs) to form a tripartite connection among enteric nerves, enteroendocrine cells, and enteric glia (see text for details). Enteric glia also form a functional bridge between immune cells. Dark blue indicates intrinsic primary afferent neurons; light blue, interneurons; orange, excitatory motor neurons; green, inhibitory motor neurons; purple, secretomotor neurons.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts