Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
PPARγ ablation sensitizes proopiomelanocortin neurons to leptin during high-fat feeding
Lihong Long, Chitoku Toda, Jing Kwon Jeong, Tamas L. Horvath, Sabrina Diano
Lihong Long, Chitoku Toda, Jing Kwon Jeong, Tamas L. Horvath, Sabrina Diano
View: Text | PDF
Research Article Metabolism

PPARγ ablation sensitizes proopiomelanocortin neurons to leptin during high-fat feeding

  • Text
  • PDF
Abstract

Activation of central PPARγ promotes food intake and body weight gain; however, the identity of the neurons that express PPARγ and mediate the effect of this nuclear receptor on energy homeostasis is unknown. Here, we determined that selective ablation of PPARγ in murine proopiomelanocortin (POMC) neurons decreases peroxisome density, elevates reactive oxygen species, and induces leptin sensitivity in these neurons. Furthermore, ablation of PPARγ in POMC neurons preserved the interaction between mitochondria and the endoplasmic reticulum, which is dysregulated by HFD. Compared with control animals, mice lacking PPARγ in POMC neurons had increased energy expenditure and locomotor activity; reduced body weight, fat mass, and food intake; and improved glucose metabolism when exposed to high-fat diet (HFD). Finally, peripheral administration of either a PPARγ activator or inhibitor failed to affect food intake of mice with POMC-specific PPARγ ablation. Taken together, our data indicate that PPARγ mediates cellular, biological, and functional adaptations of POMC neurons to HFD, thereby regulating whole-body energy balance.

Authors

Lihong Long, Chitoku Toda, Jing Kwon Jeong, Tamas L. Horvath, Sabrina Diano

×

Figure 5

Pomc-Cre Ppargfl/fl mice on HFD have improved glucose metabolism.

Options: View larger image (or click on image) Download as PowerPoint
Pomc-Cre Ppargfl/fl mice on HFD have improved glucose metabolism.
(A) In...
(A) Increased glucose and (B) insulin tolerance in female Pomc-Cre Ppargfl/fl animals (n = 5) compared with controls (n = 8). (C and D) Graphs shown a significant decrease in the liver gluconeogenesis of Pomc-Cre Ppargfl/fl mice compared with matched controls, as shown by the liver mRNA levels of (C) Pepck (n = 4 per group) and (D) G6pase (n = 4 per group). Data in all graphs are shown as mean ± SEM. *P < 0.05 compared with controls.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts