Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Papillon-Lefèvre syndrome patient reveals species-dependent requirements for neutrophil defenses
Ole E. Sørensen, Stine N. Clemmensen, Sara L. Dahl, Ole Østergaard, Niels H. Heegaard, Andreas Glenthøj, Finn Cilius Nielsen, Niels Borregaard
Ole E. Sørensen, Stine N. Clemmensen, Sara L. Dahl, Ole Østergaard, Niels H. Heegaard, Andreas Glenthøj, Finn Cilius Nielsen, Niels Borregaard
View: Text | PDF
Research Article

Papillon-Lefèvre syndrome patient reveals species-dependent requirements for neutrophil defenses

  • Text
  • PDF
Abstract

Papillon-Lefèvre syndrome (PLS) results from mutations that inactivate cysteine protease cathepsin C (CTSC), which processes a variety of serine proteases considered essential for antimicrobial defense. Despite serine protease–deficient immune cell populations, PLS patients do not exhibit marked immunodeficiency. Here, we characterized a 24-year-old woman who had suffered from severe juvenile periodontal disease, but was otherwise healthy, and identified a homozygous missense mutation in CTSC indicative of PLS. Proteome analysis of patient neutrophil granules revealed that several proteins that normally localize to azurophil granules, including the major serine proteases, elastase, cathepsin G, and proteinase 3, were absent. Accordingly, neutrophils from this patient were incapable of producing neutrophil extracellular traps (NETs) in response to ROS and were unable to process endogenous cathelicidin hCAP-18 into the antibacterial peptide LL-37 in response to ionomycin. In immature myeloid cells from patient bone marrow, biosynthesis of CTSC and neutrophil serine proteases appeared normal along with initial processing and sorting to cellular storage. In contrast, these proteins were completely absent in mature neutrophils, indicating that CTSC mutation promotes protease degradation in more mature hematopoietic subsets, but does not affect protease production in progenitor cells. Together, these data indicate CTSC protects serine proteases from degradation in mature immune cells and suggest that neutrophil serine proteases are dispensable for human immunoprotection.

Authors

Ole E. Sørensen, Stine N. Clemmensen, Sara L. Dahl, Ole Østergaard, Niels H. Heegaard, Andreas Glenthøj, Finn Cilius Nielsen, Niels Borregaard

×

Figure 3

Bactericidal activity of neutrophils and defensins.

Options: View larger image (or click on image) Download as PowerPoint
Bactericidal activity of neutrophils and defensins.
(A and B) Neutrophil...
(A and B) Neutrophils isolated from blood as described above were incubated with S. aureus or K. pneumoniae at a MOI (bacteria: neutrophils) of 1:1 and 1:10, respectively, and incubated for 10 minutes, after which neutrophils were pelleted by centrifugation and resuspended in HBSS. Samples were taken immediately (time 0) and after 10 and 30 minutes. Neutrophils were lysed in water pH 11 to liberate intracellular bacteria. These were enumerated by CFU after overnight incubation. All experiments were run in triplicate. Results are expressed as CFU relative to time 0. (C and D) Defensins isolated from human neutrophil azurophil granules were incubated with S. aureus or K. pneumoniae for 1 hour at 37°C. The number of surviving bacteria was enumerated as CFU after overnight incubation. Results are expressed as CFU relative to control without defensin.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts