Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Usage Information

Targeting an IKBKE cytokine network impairs triple-negative breast cancer growth
Thanh U. Barbie, … , David A. Barbie, William E. Gillanders
Thanh U. Barbie, … , David A. Barbie, William E. Gillanders
Published November 3, 2014
Citation Information: J Clin Invest. 2014;124(12):5411-5423. https://doi.org/10.1172/JCI75661.
View: Text | PDF
Research Article Oncology

Targeting an IKBKE cytokine network impairs triple-negative breast cancer growth

  • Text
  • PDF
Abstract

Triple-negative breast cancers (TNBCs) are a heterogeneous set of cancers that are defined by the absence of hormone receptor expression and HER2 amplification. Here, we found that inducible IκB kinase–related (IKK-related) kinase IKBKE expression and JAK/STAT pathway activation compose a cytokine signaling network in the immune-activated subset of TNBC. We found that treatment of cultured IKBKE-driven breast cancer cells with CYT387, a potent inhibitor of TBK1/IKBKE and JAK signaling, impairs proliferation, while inhibition of JAK alone does not. CYT387 treatment inhibited activation of both NF-κB and STAT and disrupted expression of the protumorigenic cytokines CCL5 and IL-6 in these IKBKE-driven breast cancer cells. Moreover, in 3D culture models, the addition of CCL5 and IL-6 to the media not only promoted tumor spheroid dispersal but also stimulated proliferation and migration of endothelial cells. Interruption of cytokine signaling by CYT387 in vivo impaired the growth of an IKBKE-driven TNBC cell line and patient-derived xenografts (PDXs). A combination of CYT387 therapy with a MEK inhibitor was particularly effective, abrogating tumor growth and angiogenesis in an aggressive PDX model of TNBC. Together, these findings reveal that IKBKE-associated cytokine signaling promotes tumorigenicity of immune-driven TNBC and identify a potential therapeutic strategy using clinically available compounds.

Authors

Thanh U. Barbie, Gabriela Alexe, Amir R. Aref, Shunqiang Li, Zehua Zhu, Xiuli Zhang, Yu Imamura, Tran C. Thai, Ying Huang, Michaela Bowden, John Herndon, Travis J. Cohoon, Timothy Fleming, Pablo Tamayo, Jill P. Mesirov, Shuji Ogino, Kwok-Kin Wong, Matthew J. Ellis, William C. Hahn, David A. Barbie, William E. Gillanders

×

Usage data is cumulative from January 2020 through January 2021.

Usage JCI PMC
Text version 648 174
PDF 104 191
Figure 125 0
Table 47 0
Supplemental data 13 2
Citation downloads 8 0
Totals 945 367
Total Views 1,312
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts