Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
KLHL40 deficiency destabilizes thin filament proteins and promotes nemaline myopathy
Ankit Garg, … , Rhonda Bassel-Duby, Eric N. Olson
Ankit Garg, … , Rhonda Bassel-Duby, Eric N. Olson
Published June 24, 2014
Citation Information: J Clin Invest. 2014;124(8):3529-3539. https://doi.org/10.1172/JCI74994.
View: Text | PDF
Research Article

KLHL40 deficiency destabilizes thin filament proteins and promotes nemaline myopathy

  • Text
  • PDF
Abstract

Nemaline myopathy (NM) is a congenital myopathy that can result in lethal muscle dysfunction and is thought to be a disease of the sarcomere thin filament. Recently, several proteins of unknown function have been implicated in NM, but the mechanistic basis of their contribution to disease remains unresolved. Here, we demonstrated that loss of a muscle-specific protein, kelch-like family member 40 (KLHL40), results in a nemaline-like myopathy in mice that closely phenocopies muscle abnormalities observed in KLHL40-deficient patients. We determined that KLHL40 localizes to the sarcomere I band and A band and binds to nebulin (NEB), a protein frequently implicated in NM, as well as a putative thin filament protein, leiomodin 3 (LMOD3). KLHL40 belongs to the BTB-BACK-kelch (BBK) family of proteins, some of which have been shown to promote degradation of their substrates. In contrast, we found that KLHL40 promotes stability of NEB and LMOD3 and blocks LMOD3 ubiquitination. Accordingly, NEB and LMOD3 were reduced in skeletal muscle of both Klhl40–/– mice and KLHL40-deficient patients. Loss of sarcomere thin filament proteins is a frequent cause of NM; therefore, our data that KLHL40 stabilizes NEB and LMOD3 provide a potential basis for the development of NM in KLHL40-deficient patients.

Authors

Ankit Garg, Jason O’Rourke, Chengzu Long, Jonathan Doering, Gianina Ravenscroft, Svetlana Bezprozvannaya, Benjamin R. Nelson, Nadine Beetz, Lin Li, She Chen, Nigel G. Laing, Robert W. Grange, Rhonda Bassel-Duby, Eric N. Olson

×

Figure 6

Reduced NEB and LMOD3 in KLHL40-deficient muscles.

Options: View larger image (or click on image) Download as PowerPoint
Reduced NEB and LMOD3 in KLHL40-deficient muscles.
(A and B) Densitometr...
(A and B) Densitometry analysis of P1 and P8 quadriceps muscle (A) NEB dot blot and (B) LMOD3 Western blot shows downregulation of both proteins in KO muscles compared with WT muscles (see Supplemental Figure 14) (P1: WT and KO, n = 3; P8: WT, n = 5, HET, n = 4, and KO, n = 5). *P < 0.05, FDR = 0.05. Data are presented as mean ± SEM. (C) Quantitative proteomic analysis of relative protein changes between P6 WT (n = 3) and KO (n = 3) whole skeletal muscle shows that LMOD3 and NEB are 2 of the most downregulated proteins without corresponding changes in transcription (Supplemental Figure 14G). Data are arbitrarily stratified by exponentially modified protein abundance index (emPAI) to allow for better resolution of individual data points. Only proteins with significant (P < 0.05) changes between WT and KO mice are shown. Values for each point are listed in Supplemental Table 2.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts