Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis
Rafael Kramann, Susanne V. Fleig, Rebekka K. Schneider, Steven L. Fabian, Derek P. DiRocco, Omar Maarouf, Janewit Wongboonsin, Yoichiro Ikeda, Dirk Heckl, Steven L. Chang, Helmut G. Rennke, Sushrut S. Waikar, Benjamin D. Humphreys
Rafael Kramann, Susanne V. Fleig, Rebekka K. Schneider, Steven L. Fabian, Derek P. DiRocco, Omar Maarouf, Janewit Wongboonsin, Yoichiro Ikeda, Dirk Heckl, Steven L. Chang, Helmut G. Rennke, Sushrut S. Waikar, Benjamin D. Humphreys
View: Text | PDF
Research Article Nephrology

Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis

  • Text
  • PDF
Abstract

Chronic kidney disease is characterized by interstitial fibrosis and proliferation of scar-secreting myofibroblasts, ultimately leading to end-stage renal disease. The hedgehog (Hh) pathway transcriptional effectors GLI1 and GLI2 are expressed in myofibroblast progenitors; however, the role of these effectors during fibrogenesis is poorly understood. Here, we demonstrated that GLI2, but not GLI1, drives myofibroblast cell-cycle progression in cultured mesenchymal stem cell–like progenitors. In animals exposed to unilateral ureteral obstruction, Hh pathway suppression by expression of the GLI3 repressor in GLI1+ myofibroblast progenitors limited kidney fibrosis. Myofibroblast-specific deletion of Gli2, but not Gli1, also limited kidney fibrosis, and induction of myofibroblast-specific cell-cycle arrest mediated this inhibition. Pharmacologic targeting of this pathway with darinaparsin, an arsenical in clinical trials, reduced fibrosis through reduction of GLI2 protein levels and subsequent cell-cycle arrest in myofibroblasts. GLI2 overexpression rescued the cell-cycle effect of darinaparsin in vitro. While darinaparsin ameliorated fibrosis in WT and Gli1-KO mice, it was not effective in conditional Gli2-KO mice, supporting GLI2 as a direct darinaparsin target. The GLI inhibitor GANT61 also reduced fibrosis in mice. Finally, GLI1 and GLI2 were upregulated in the kidneys of patients with high-grade fibrosis. Together, these data indicate that GLI inhibition has potential as a therapeutic strategy to limit myofibroblast proliferation in kidney fibrosis.

Authors

Rafael Kramann, Susanne V. Fleig, Rebekka K. Schneider, Steven L. Fabian, Derek P. DiRocco, Omar Maarouf, Janewit Wongboonsin, Yoichiro Ikeda, Dirk Heckl, Steven L. Chang, Helmut G. Rennke, Sushrut S. Waikar, Benjamin D. Humphreys

×

Figure 8

Upregulation of GLI in human kidney fibrosis.

Options: View larger image (or click on image) Download as PowerPoint
Upregulation of GLI in human kidney fibrosis.
(A and B) Human kidney tis...
(A and B) Human kidney tissue was obtained from tumor nephrectomy specimens from 10 patients and scored by an experienced kidney pathologist for the degree of interstitial fibrosis. (A) Representative images of trichrome and periodic acid-Schiff–stained (PAS-stained) sections of specimens assigned to the high-grade versus low-grade fibrosis groups. (B) Four specimens were assigned on the basis of fibrosis severity to the high-grade fibrosis group (interstitial fibrosis >40%) and 6 specimens to the low-grade fibrosis group (interstitial fibrosis <20%). Clinical data on the patients are provided in Supplemental Table 3. (C) qRT-PCR analysis indicated significantly higher mRNA expression levels of the fibrotic readouts COL1A1, FN, and ACTA2 in the high-grade fibrosis group compared with levels in the low-grade fibrosis group, as expected. (D) qRT-PCR analysis indicated a significant upregulation of GLI1, GLI2, and PTCH1 mRNA levels in the high-grade fibrosis group compared with that detected in the low-grade fibrosis group. P values were calculated by t test. Data represent the mean ± SEM. Scale bars: 100 μm.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts