Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Resident fibroblast lineages mediate pressure overload–induced cardiac fibrosis
Thomas Moore-Morris, … , Ju Chen, Sylvia M. Evans
Thomas Moore-Morris, … , Ju Chen, Sylvia M. Evans
Published June 17, 2014
Citation Information: J Clin Invest. 2014;124(7):2921-2934. https://doi.org/10.1172/JCI74783.
View: Text | PDF
Research Article

Resident fibroblast lineages mediate pressure overload–induced cardiac fibrosis

  • Text
  • PDF
Abstract

Activation and accumulation of cardiac fibroblasts, which result in excessive extracellular matrix deposition and consequent mechanical stiffness, myocyte uncoupling, and ischemia, are key contributors to heart failure progression. Recently, endothelial-to-mesenchymal transition (EndoMT) and the recruitment of circulating hematopoietic progenitors to the heart have been reported to generate substantial numbers of cardiac fibroblasts in response to pressure overload–induced injury; therefore, these processes are widely considered to be promising therapeutic targets. Here, using multiple independent murine Cre lines and a collagen1a1-GFP fusion reporter, which specifically labels fibroblasts, we found that following pressure overload, fibroblasts were not derived from hematopoietic cells, EndoMT, or epicardial epithelial-to-mesenchymal transition. Instead, pressure overload promoted comparable proliferation and activation of two resident fibroblast lineages, including a previously described epicardial population and a population of endothelial origin. Together, these data present a paradigm for the origins of cardiac fibroblasts during development and in fibrosis. Furthermore, these data indicate that therapeutic strategies for reducing pathogenic cardiac fibroblasts should shift from targeting presumptive EndoMT or infiltrating hematopoietically derived fibroblasts, toward common pathways upregulated in two endogenous fibroblast populations.

Authors

Thomas Moore-Morris, Nuno Guimarães-Camboa, Indroneal Banerjee, Alexander C. Zambon, Tatiana Kisseleva, Aurélie Velayoudon, William B. Stallcup, Yusu Gu, Nancy D. Dalton, Marta Cedenilla, Rafael Gomez-Amaro, Bin Zhou, David A. Brenner, Kirk L. Peterson, Ju Chen, Sylvia M. Evans

×

Figure 1

CF markers in adult murine myocardium.

Options: View larger image (or click on image) Download as PowerPoint
CF markers in adult murine myocardium.
(A) Confocal analysis of ventricu...
(A) Confocal analysis of ventricular myocardium shows that collagen1a1-GFP labels CFs (arrows) that expressed the mesenchymal marker PDGFRα and vimentin. Collagen1a1-GFP+ fibroblasts were negative for markers of endothelium (PECAM1), blood lineages (CD45), pericytes (PDGFRβ), and smooth muscle (αSMA). (B) Flow cytometry analysis of dissociated LV and IVS, showing overlap of collagen1a1-GFP and PDGFRα signals. (C) Flow cytometry analysis of LV and IVS, showing that collagen1a1-GFP cells are mostly, but not all, Thy1.2 positive. (D) Collagen1a1-GFP+ cells were PECAM1– and CD45–. (E) Quantitative real-time PCR showing fold enrichment of DDR2, prolyl-4-hydroxylase (p4h), and PECAM1 in flow cytometry–sorted collagen1a1-GFP+ and Pecam1+ cells (n = 3 hearts, average ± SEM). (F) Confocal images showing colocalization of FSP1 CD45+ leukocytes (arrows) but not with collagen1a1-GFP fibroblasts. Images are representative of at least 3 hearts. Scale bars: 20 μm; 5 μm (inset).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts