Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Remote control of induced dopaminergic neurons in parkinsonian rats
Maria Teresa Dell’Anno, … , Alexander Dityatev, Vania Broccoli
Maria Teresa Dell’Anno, … , Alexander Dityatev, Vania Broccoli
Published June 17, 2014
Citation Information: J Clin Invest. 2014;124(7):3215-3229. https://doi.org/10.1172/JCI74664.
View: Text | PDF
Research Article

Remote control of induced dopaminergic neurons in parkinsonian rats

  • Text
  • PDF
Abstract

Direct lineage reprogramming through genetic-based strategies enables the conversion of differentiated somatic cells into functional neurons and distinct neuronal subtypes. Induced dopaminergic (iDA) neurons can be generated by direct conversion of skin fibroblasts; however, their in vivo phenotypic and functional properties remain incompletely understood, leaving their impact on Parkinson’s disease (PD) cell therapy and modeling uncertain. Here, we determined that iDA neurons retain a transgene-independent stable phenotype in culture and in animal models. Furthermore, transplanted iDA neurons functionally integrated into host neuronal tissue, exhibiting electrically excitable membranes, synaptic currents, dopamine release, and substantial reduction of motor symptoms in a PD animal model. Neuronal cell replacement approaches will benefit from a system that allows the activity of transplanted neurons to be controlled remotely and enables modulation depending on the physiological needs of the recipient; therefore, we adapted a DREADD (designer receptor exclusively activated by designer drug) technology for remote and real-time control of grafted iDA neuronal activity in living animals. Remote DREADD-dependent iDA neuron activation markedly enhanced the beneficial effects in transplanted PD animals. These data suggest that iDA neurons have therapeutic potential as a cell replacement approach for PD and highlight the applicability of pharmacogenetics for enhancing cellular signaling in reprogrammed cell–based approaches.

Authors

Maria Teresa Dell’Anno, Massimiliano Caiazzo, Damiana Leo, Elena Dvoretskova, Lucian Medrihan, Gaia Colasante, Serena Giannelli, Ilda Theka, Giovanni Russo, Liudmila Mus, Gianni Pezzoli, Raul R. Gainetdinov, Fabio Benfenati, Stefano Taverna, Alexander Dityatev, Vania Broccoli

×

Figure 4

Functional integration of transplanted iDA neurons.

Options: View larger image (or click on image) Download as PowerPoint
Functional integration of transplanted iDA neurons.
(A and B) Immunohist...
(A and B) Immunohistochemistry of iDA neurons grafted into immunodepressed mice for electrophysiological recordings. (C–E) High magnification of a biocytin-filled reprogrammed neuron immunostained for GFP. (F) Voltage-dependent Na+ (negative-going) and K+ (positive-going) currents in response to 10-mV steps (starting from a Vh of –70 mV) in voltage-clamp mode. Inset shows a magnified view of the first portion of the traces. (G) Voltage responses of an iDA neuron to hyperpolarizing and depolarizing current steps in current-clamp mode. (H) Continuous AP firing was induced by a slow suprathreshold current ramp (~4 pA/second). (I) Assessment of FFN511+ synaptic terminals on transplanted TH-GFP+ iDA neuronal fibers in brain slices. (J) Upper panel: sEPSCs recorded at a Vh of –70 mV were blocked by the extracellular application of 5 μM NBQX. Lower panel: sIPSCs recorded at a Vh of 0 mV were blocked by the extracellular application of 10 μM gabazine. Insets show averaged EPSCs and IPSCs, respectively, in an expanded time scale. Scale bars: 600 μm (A), 150 μm (B), 50 μm (C–E), 100 μm (I). A–J are representative images of 3 independent experiments performed on 3 mice and 6 cells (F–J).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts