Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Non-self recognition by monocytes initiates allograft rejection
Martin H. Oberbarnscheidt, Qiang Zeng, Qi Li, Hehua Dai, Amanda L. Williams, Warren D. Shlomchik, David M. Rothstein, Fadi G. Lakkis
Martin H. Oberbarnscheidt, Qiang Zeng, Qi Li, Hehua Dai, Amanda L. Williams, Warren D. Shlomchik, David M. Rothstein, Fadi G. Lakkis
View: Text | PDF
Research Article

Non-self recognition by monocytes initiates allograft rejection

  • Text
  • PDF
Abstract

Maturation of T cell–activating APCs directly links innate and adaptive immunity and is typically triggered by microbial infection. Transplantation of allografts, which are sterile, generates strong T cell responses; however, it is unclear how grafts induce APC maturation in the absence of microbial-derived signals. A widely accepted hypothesis is that dying cells in the graft release “danger” molecules that induce APC maturation and initiate the adaptive alloimmune response. Here, we demonstrated that danger signals associated with dying cells are not sufficient to initiate alloimmunity, but that recognition of allogeneic non-self by the innate immune system is required. In WT as well as in T cell–, B cell–, and innate lymphoid cell–deficient mice, allogeneic grafts elicited persistent differentiation of monocytes into mature DCs that expressed IL-12 and stimulated T cell proliferation and IFN-γ production. In contrast, syngeneic grafts in the same mice elicited transient and less pronounced differentiation of monocytes into DCs, which neither expressed IL-12 nor stimulated IFN-γ production. In a model in which T cell recognition is restricted to a single foreign antigen on the graft, rejection occurred only if the allogeneic non-self signal was also sensed by the host’s innate immune system. These findings underscore the importance of innate recognition of allogeneic non-self by monocytes in initiating graft rejection.

Authors

Martin H. Oberbarnscheidt, Qiang Zeng, Qi Li, Hehua Dai, Amanda L. Williams, Warren D. Shlomchik, David M. Rothstein, Fadi G. Lakkis

×

Figure 4

Analysis of monocyte and mono-DC infiltration of kidney grafts transplanted into lymphoid cell–deficient recipients.

Options: View larger image (or click on image) Download as PowerPoint
Analysis of monocyte and mono-DC infiltration of kidney grafts transplan...
B6 (Syn; black circles) or BALB/c (Allo; white circles) kidneys were transplanted into B6 RAG–/–γc–/–CX3CR1gfp/+ mice. Kidneys were imaged by intravital 2-photon microscopy either immediately (day 0) or on day 3 after transplantation. Enumeration of total (A), intravascular (i), and extravascular (e) (B), and round and dendrite-shaped GFP+ cells (C) in kidney grafts. Each data point in A and B represents 1 image volume. Image volume = 510 × 510 × 25 εm. Representative micrographs show GFP+ cells in green and capillaries in red. Scale bars: 50 εm (A) and 10 εm (C). n = 3–4 mice/group (1–5 image volumes/mouse). *P < 0.05 compared with the corresponding syngeneic group.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts