Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Cytokine therapy reverses NK cell anergy in MHC-deficient tumors
Michele Ardolino, … , K. Christopher Garcia, David H. Raulet
Michele Ardolino, … , K. Christopher Garcia, David H. Raulet
Published October 20, 2014
Citation Information: J Clin Invest. 2014;124(11):4781-4794. https://doi.org/10.1172/JCI74337.
View: Text | PDF
Research Article

Cytokine therapy reverses NK cell anergy in MHC-deficient tumors

  • Text
  • PDF
Abstract

Various cytokines have been evaluated as potential anticancer drugs; however, most cytokine trials have shown relatively low efficacy. Here, we found that treatments with IL-12 and IL-18 or with a mutant form of IL-2 (the “superkine” called H9) provided substantial therapeutic benefit for mice specifically bearing MHC class I–deficient tumors, but these treatments were ineffective for mice with matched MHC class I+ tumors. Cytokine efficacy was linked to the reversal of the anergic state of NK cells that specifically occurred in MHC class I–deficient tumors, but not MHC class I+ tumors. NK cell anergy was accompanied by impaired early signal transduction and was locally imparted by the presence of MHC class I–deficient tumor cells, even when such cells were a minor population in a tumor mixture. These results demonstrate that MHC class I–deficient tumor cells can escape from the immune response by functionally inactivating NK cells, and suggest cytokine-based immunotherapy as a potential strategy for MHC class I–deficient tumors. These results suggest that such cytokine therapies would be optimized by stratification of patients. Moreover, our results suggest that such treatments may be highly beneficial in the context of therapies to enhance NK cell functions in cancer patients.

Authors

Michele Ardolino, Camillia S. Azimi, Alexandre Iannello, Troy N. Trevino, Lucas Horan, Lily Zhang, Weiwen Deng, Aaron M. Ring, Suzanne Fischer, K. Christopher Garcia, David H. Raulet

×

Figure 8

A minor fraction of MHC class I–deficient tumor cells dominantly induces NK cell anergy.

Options: View larger image (or click on image) Download as PowerPoint
A minor fraction of MHC class I–deficient tumor cells dominantly induces...
Mice were injected with RMA, RMA-S, or mixtures of the 2 cell lines at the ratios shown. After 14 days, tumor sizes (A) were evaluated by caliper measurements. The ratios between RMA and RMA-S in the tumors (B) were determined by analysis of MHC class I expression on tumor cells. NK cell responsiveness (C) was determined as described in the legend to Figure 3. The experiments included at least 4 mice per group and were performed 2 times with similar results. Bars represent means ± SD. Statistical analyses were performed with the 2-tailed unpaired Student’s t test. *P < 0.05 with respect to RMA group.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts