Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Cytokine therapy reverses NK cell anergy in MHC-deficient tumors
Michele Ardolino, … , K. Christopher Garcia, David H. Raulet
Michele Ardolino, … , K. Christopher Garcia, David H. Raulet
Published October 20, 2014
Citation Information: J Clin Invest. 2014;124(11):4781-4794. https://doi.org/10.1172/JCI74337.
View: Text | PDF
Research Article

Cytokine therapy reverses NK cell anergy in MHC-deficient tumors

  • Text
  • PDF
Abstract

Various cytokines have been evaluated as potential anticancer drugs; however, most cytokine trials have shown relatively low efficacy. Here, we found that treatments with IL-12 and IL-18 or with a mutant form of IL-2 (the “superkine” called H9) provided substantial therapeutic benefit for mice specifically bearing MHC class I–deficient tumors, but these treatments were ineffective for mice with matched MHC class I+ tumors. Cytokine efficacy was linked to the reversal of the anergic state of NK cells that specifically occurred in MHC class I–deficient tumors, but not MHC class I+ tumors. NK cell anergy was accompanied by impaired early signal transduction and was locally imparted by the presence of MHC class I–deficient tumor cells, even when such cells were a minor population in a tumor mixture. These results demonstrate that MHC class I–deficient tumor cells can escape from the immune response by functionally inactivating NK cells, and suggest cytokine-based immunotherapy as a potential strategy for MHC class I–deficient tumors. These results suggest that such cytokine therapies would be optimized by stratification of patients. Moreover, our results suggest that such treatments may be highly beneficial in the context of therapies to enhance NK cell functions in cancer patients.

Authors

Michele Ardolino, Camillia S. Azimi, Alexandre Iannello, Troy N. Trevino, Lucas Horan, Lily Zhang, Weiwen Deng, Aaron M. Ring, Suzanne Fischer, K. Christopher Garcia, David H. Raulet

×

Figure 1

IL-12+IL-18 treatment increases survival of mice bearing MHC class I–deficient tumors.

Options: View larger image (or click on image) Download as PowerPoint
IL-12+IL-18 treatment increases survival of mice bearing MHC class I–def...
(A) 104 or 106 RMA or RMA-S cells were injected s.c. in B6 mice. Tumor growth was assessed by caliper measurement. (B and C) Kaplan-Meier analyses of RMA-S– or RMA-bearing mice treated or not with 100 ng each of IL-12+IL-18 every other day starting 7 days after implanting 106 tumor cells. In C, 1 group of mice was depleted of NK cells by a weekly i.p. injection of 200 μg of PK136 antibody, starting 5 days after implantation of tumor cells. NK depletion of the cytokine-treated group resulted in significantly reduced survival (P = 0.02) according to the log-rank (Mantel-Cox) test. The experiments included at least 4 mice per group and were performed at least 2 times with similar results.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts