Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Paradoxical insights into whole body metabolic adaptations following SGLT2 inhibition
William T. Cefalu
William T. Cefalu
Published January 27, 2014
Citation Information: J Clin Invest. 2014;124(2):485-487. https://doi.org/10.1172/JCI74297.
View: Text | PDF
Commentary

Paradoxical insights into whole body metabolic adaptations following SGLT2 inhibition

  • Text
  • PDF
Abstract

It is well known that glycemic control over time reduces microvascular and macrovascular complications in human subjects with type 2 diabetes. In addition, preclinical models of type 2 diabetes have demonstrated that long-term hyperglycemia exacerbates insulin resistance and reduces β cell function; therefore, therapies that reduce blood glucose levels are of great interest in not only controlling complications, but for restoring known defects in the pathogenesis of type 2 diabetes. Pharmacological inhibition of the sodium-glucose cotransporter 2 (SGLT2) reduces plasma glucose by limiting glucose absorption in the kidney and increasing glucose excretion in the urine. In this issue of the JCI, Merovci and colleagues and Ferrannini and colleagues independently report a paradoxical increase in endogenous glucose production in patients with type 2 diabetes following SGLT2 inhibition, despite an overall decrease in fasting plasma glucose. Together, these studies provide a unique insight into the effects of SGLT2 inhibition on whole body metabolism.

Authors

William T. Cefalu

×

Full Text PDF | Download (736.02 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts