Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Hepatic stellate cells contribute to progenitor cells and liver regeneration
Claus Kordes, … , Diran Herebian, Dieter Häussinger
Claus Kordes, … , Diran Herebian, Dieter Häussinger
Published November 17, 2014
Citation Information: J Clin Invest. 2014;124(12):5503-5515. https://doi.org/10.1172/JCI74119.
View: Text | PDF
Research Article

Hepatic stellate cells contribute to progenitor cells and liver regeneration

  • Text
  • PDF
Abstract

Retinoid-storing hepatic stellate cells (HSCs) have recently been described as a liver-resident mesenchymal stem cell (MSC) population; however, it is not clear whether these cells contribute to liver regeneration or serve as a progenitor cell population with hepatobiliary characteristics. Here, we purified HSCs with retinoid-dependent fluorescence-activated cell sorting from eGFP-expressing rats and transplanted these GFP+ HSCs into wild-type (WT) rats that had undergone partial hepatectomy in the presence of 2-acetylaminofluorene (2AAF) or retrorsine, both of which are injury models that favor stem cell–based liver repair. Transplanted HSCs contributed to liver regeneration in host animals by forming mesenchymal tissue, progenitor cells, hepatocytes, and cholangiocytes and elevated direct bilirubin levels in blood sera of GUNN rats, indicating recovery from the hepatic bilirubin–handling defect in these animals. Transplanted HSCs engrafted within the bone marrow (BM) of host animals, and HSC-derived cells were isolated from BM and successfully retransplanted into new hosts with injured liver. Cultured HSCs transiently adopted an expression profile similar to that of progenitor cells during differentiation into bile acid–synthesizing and –transporting hepatocytes, suggesting that stellate cells represent a source of liver progenitor cells. This concept connects seemingly contradictory studies that favor either progenitor cells or MSCs as important players in stem cell–based liver regeneration.

Authors

Claus Kordes, Iris Sawitza, Silke Götze, Diran Herebian, Dieter Häussinger

×

Figure 7

MSCs transiently acquire the gene expression of liver progenitor cells during their differentiation into hepatocytes.

Options: View larger image (or click on image) Download as PowerPoint
MSCs transiently acquire the gene expression of liver progenitor cells d...
(A–O) Freshly isolated HSCs, clonally expanded HSCs (clones 1E7, 4E7, and 3F8), BM MSCs, and UCBSCs (clone 1G11) from rats were treated for 21 days with a hepatocyte differentiation medium that contained HGF and FGF4. Expression of (A) vimentin, (B) desmin, (C) K19, (D) Epcam, (E) Lgr5, (F) α-fetoprotein, (G) Cyp7a1, (H) Hnf4a, (I) albumin, and (J) Sox9 was analyzed by qPCR. mRNA samples were taken at weekly intervals. Gene expression of the cells at the beginning of the differentiation experiments is indicated as Day 1. (K) To verify hepatic differentiation, the hepatocyte marker albumin was also measured in the culture supernatant of HSCs, HSC clones, BM MSCs, and UCBSCs by a rat-specific albumin ELISA. Hepatic function of MSC-derived hepatocyte-like cells was also determined by quantitation of the bile acids (L) cholic acid, (M) chenodeoxycholic acid, (N) ursodeoxycholic acid, and (O) ω/α-muricholic acid in culture supernatants by UHPLC-MS/MS. Bile acids were allowed to accumulate for 2 days in the culture medium before analysis. Bar values represent arithmetic means and were interpolated to indicate the trend (colored lines) for each cell group. Expression profiles, albumin synthesis, and bile acid release were determined in 3 independent experiments (n = 3).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts