Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R–mediated apoptosis
Thomas Condamine, … , Thomas Bauer, Dmitry I. Gabrilovich
Thomas Condamine, … , Thomas Bauer, Dmitry I. Gabrilovich
Published May 1, 2014
Citation Information: J Clin Invest. 2014;124(6):2626-2639. https://doi.org/10.1172/JCI74056.
View: Text | PDF
Research Article Immunology

ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R–mediated apoptosis

  • Text
  • PDF
Abstract

Myeloid-derived suppressor cells (MDSCs) dampen the immune response thorough inhibition of T cell activation and proliferation and often are expanded in pathological conditions. Here, we studied the fate of MDSCs in cancer. Unexpectedly, MDSCs had lower viability and a shorter half-life in tumor-bearing mice compared with neutrophils and monocytes. The reduction of MDSC viability was due to increased apoptosis, which was mediated by increased expression of TNF-related apoptosis–induced ligand receptors (TRAIL-Rs) in these cells. Targeting TRAIL-Rs in naive mice did not affect myeloid cell populations, but it dramatically reduced the presence of MDSCs and improved immune responses in tumor-bearing mice. Treatment of myeloid cells with proinflammatory cytokines did not affect TRAIL-R expression; however, induction of ER stress in myeloid cells recapitulated changes in TRAIL-R expression observed in tumor-bearing hosts. The ER stress response was detected in MDSCs isolated from cancer patients and tumor-bearing mice, but not in control neutrophils or monocytes, and blockade of ER stress abrogated tumor-associated changes in TRAIL-Rs. Together, these data indicate that MDSC pathophysiology is linked to ER stress, which shortens the lifespan of these cells in the periphery and promotes expansion in BM. Furthermore, TRAIL-Rs can be considered as potential targets for selectively inhibiting MDSCs.

Authors

Thomas Condamine, Vinit Kumar, Indu R. Ramachandran, Je-In Youn, Esteban Celis, Niklas Finnberg, Wafik S. El-Deiry, Rafael Winograd, Robert H. Vonderheide, Nickolas R. English, Stella C. Knight, Hideo Yagita, Judith C. McCaffrey, Scott Antonia, Neil Hockstein, Robert Witt, Gregory Masters, Thomas Bauer, Dmitry I. Gabrilovich

×

Figure 9

Mechanism of different regulation of DR5 in human and mouse PMNs.

Options: View larger image (or click on image) Download as PowerPoint
Mechanism of different regulation of DR5 in human and mouse PMNs.
(A) SK...
(A) SK-MEL melanoma tumor cells and MDA231 breast cancer cells were treated overnight with thapsigargin (dotted line) or left untreated (solid line), and DR5 expression was assessed by flow cytometry. Gray filled histogram, isotype control. Typical result is shown. (B) Mouse PMNs were purified from BM of naive mice and cultured for 24 hours in the presence of thapsigargin in combination with VPA. DR5 expression was assessed by flow cytometry (n = 3). (C) Effect of VPA and THG combination on DR5 expression in PMNs. DR5 expression was assessed by flow cytometry. Gray filled histogram, isotype control; black solid line, untreated; gray solid line, VPA alone; dotted line, VPA plus THG. Shown is 1 representative staining of 3 different experiments. (D) ChIP of DR5 promoter with acetylated histone H3 or acetylated histone H4 antibodies in healthy donor PMNs and the SK-MEL melanoma cell line cultured overnight with or without VPA. Results are expressed as DNA enrichment normalized to corresponding input value. (E) Potential role of ER stress and TRAIL-Rs in the fate of MDSCs.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts