Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
MEL-18 loss mediates estrogen receptor–α downregulation and hormone independence
Jeong-Yeon Lee, … , Young-Ha Oh, Gu Kong
Jeong-Yeon Lee, … , Young-Ha Oh, Gu Kong
Published March 30, 2015
Citation Information: J Clin Invest. 2015;125(5):1801-1814. https://doi.org/10.1172/JCI73743.
View: Text | PDF
Research Article Oncology

MEL-18 loss mediates estrogen receptor–α downregulation and hormone independence

  • Text
  • PDF
Abstract

The polycomb protein MEL-18 has been proposed as a tumor suppressor in breast cancer; however, its functional relevance to the hormonal regulation of breast cancer remains unknown. Here, we demonstrated that MEL-18 loss contributes to the hormone-independent phenotype of breast cancer by modulating hormone receptor expression. In multiple breast cancer cohorts, MEL-18 was markedly downregulated in triple-negative breast cancer (TNBC). MEL-18 expression positively correlated with the expression of luminal markers, including estrogen receptor–α (ER-α, encoded by ESR1). MEL-18 loss was also associated with poor response to antihormonal therapy in ER-α–positive breast cancer. Furthermore, whereas MEL-18 loss in luminal breast cancer cells resulted in the downregulation of expression and activity of ER-α and the progesterone receptor (PR), MEL-18 overexpression restored ER-α expression in TNBC. Consistently, in vivo xenograft experiments demonstrated that MEL-18 loss induces estrogen-independent growth and tamoxifen resistance in luminal breast cancer, and that MEL-18 overexpression confers tamoxifen sensitivity in TNBC. MEL-18 suppressed SUMOylation of the ESR1 transactivators p53 and SP1, thereby driving ESR1 transcription. MEL-18 facilitated the deSUMOylation process by inhibiting BMI-1/RING1B-mediated ubiquitin-proteasomal degradation of SUMO1/sentrin-specific protease 1 (SENP1). These findings demonstrate that MEL-18 is a SUMO-dependent regulator of hormone receptors and suggest MEL-18 expression as a marker for determining the antihormonal therapy response in patients with breast cancer.

Authors

Jeong-Yeon Lee, Hee-Young Won, Ji-Hye Park, Hye-Yeon Kim, Hee-Joo Choi, Dong-Hui Shin, Ju-Hee Kang, Jong-Kyu Woo, Seung-Hyun Oh, Taekwon Son, Jin-Woo Choi, Sehwan Kim, Hyung-Yong Kim, Kijong Yi, Ki-Seok Jang, Young-Ha Oh, Gu Kong

×

Figure 5

MEL-18 regulates ESR1 transcription by inhibiting the SUMOylation of the ESR1 transcription factors p53 and SP1.

Options: View larger image (or click on image) Download as PowerPoint
MEL-18 regulates ESR1 transcription by inhibiting the SUMOylation of the...
(A) Cell lysates treated with 20 mM N-ethylmaleimide (NEM) were subjected to immunoblotting. The amount of SUMOylated protein was quantified by measuring the ratio of SUMOylated protein/total protein. (B) Venn diagram showing the relationship between the microarray results for MCF-7 cells expressing MEL-18 shRNA (shMEL) and those for MCF-7 cells treated with RITA (GSE13291) (36). (C) MCF-7 cells expressing MEL-18 siRNA (siMEL) were cotransfected with WT or SUMOylation-deficient mutant constructs of p53 or SP1 and with ESR1 pro-Luciferase and were subjected to a luciferase reporter assay. The data are presented as the mean ± SD (n = 3). *P < 0.05 vs. siCon/Con; †P < 0.05 siMEL/Con (2-tailed Student’s t test). (D) ChIP-qPCR analysis showing the amount of ESR1 transcription factor that was recruited to the ESR1 promoter in the indicated cells. The data are presented as the mean ± SD (n = 3). *P < 0.05 vs. shCon (2-tailed Student’s t test). (E) The effect of ginkgolic acid on the expression of ER-α in the MEL-18–silenced cells. Cells were treated with 100 mM ginkgolic acid for 24 hours and subjected to immunoblotting. Parallel samples examined on separate gels are shown. The data were quantified by measuring the immunoblot band densities from three independent experiments (mean ± SD). *P < 0.05 vs. shCon; †P < 0.05 vs. shMEL (2-tailed Student’s t test). All data shown are representative of three independent experiments.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts