Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Biliary repair and carcinogenesis are mediated by IL-33–dependent cholangiocyte proliferation
Jun Li, … , Pranavkumar Shivakumar, Jorge A. Bezerra
Jun Li, … , Pranavkumar Shivakumar, Jorge A. Bezerra
Published June 2, 2014
Citation Information: J Clin Invest. 2014;124(7):3241-3251. https://doi.org/10.1172/JCI73742.
View: Text | PDF
Research Article Oncology

Biliary repair and carcinogenesis are mediated by IL-33–dependent cholangiocyte proliferation

  • Text
  • PDF
Abstract

Injury to the biliary epithelium triggers inflammation and fibrosis, which can result in severe liver diseases and may progress to malignancy. Development of a type 1 immune response has been linked to biliary injury pathogenesis; however, a subset of patients with biliary atresia, the most common childhood cholangiopathy, exhibit increased levels of Th2-promoting cytokines. The relationship among different inflammatory drivers, epithelial repair, and carcinogenesis remains unclear. Here, we determined that the Th2-activating cytokine IL-33 is elevated in biliary atresia patient serum and in the livers and bile ducts of mice with experimental biliary atresia. Administration of IL-33 to WT mice markedly increased cholangiocyte proliferation and promoted sustained cell growth, resulting in dramatic and rapid enlargement of extrahepatic bile ducts. The IL-33–dependent proliferative response was mediated by an increase in the number of type 2 innate lymphoid cells (ILC2s), which released high levels of IL-13 that in turn promoted cholangiocyte hyperplasia. Induction of the IL-33/ILC2/IL-13 circuit in a murine biliary injury model promoted epithelial repair; however, induction of this circuit in mice with constitutive activation of AKT and YAP in bile ducts induced cholangiocarcinoma with liver metastases. These findings reveal that IL-33 mediates epithelial proliferation and suggest that activation of IL-33/ILC2/IL-13 may improve biliary repair and disruption of the circuit may block progression of carcinogenesis.

Authors

Jun Li, Nataliya Razumilava, Gregory J. Gores, Stephanie Walters, Tatsuki Mizuochi, Reena Mourya, Kazuhiko Bessho, Yui-Hsi Wang, Shannon S. Glaser, Pranavkumar Shivakumar, Jorge A. Bezerra

×

Figure 1

Expression of IL-33 is increased in humans and mice with biliary atresia.

Options: View larger image (or click on image) Download as PowerPoint
Expression of IL-33 is increased in humans and mice with biliary atresia...
(A) Serum concentration of IL-33 in infants with biliary atresia (BA) at the time of diagnosis (n = 20, < 4 months of age) and in age-matched normal controls (NC) (n = 6). (B) Il33 mRNA expression (as a ratio to Hprt; graphs) and PanCK staining of liver and EHBDs at 3, 7, and 14 days after injection with RRV or normal saline (NS) in the first 24 hours of life. Each time point had n = 4–5 mice for normal saline and RRV groups. Representative immunostaining experiments included tissue sections from 3 mice for each group and time point. Mean ± SD. *P < 0.05; ***P < 0.001. Scale bars: 50 μm.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts