Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Mind your rhythms: an important role for circadian genes in neuroprotection
Colleen A. McClung
Colleen A. McClung
Published November 25, 2013
Citation Information: J Clin Invest. 2013;123(12):4994-4996. https://doi.org/10.1172/JCI73059.
View: Text | PDF
Commentary

Mind your rhythms: an important role for circadian genes in neuroprotection

  • Text
  • PDF
Abstract

Circadian rhythms govern nearly every physiological process in our brains and bodies. At the most basic level, the molecular clockwork in each cell interacts with metabolic cycles to influence the redox state, allowing for increased cellular activity at specific times of day. In this issue of the JCI, Musiek et al. show that genetic disruptions in the positive arm of the molecular clock can lead to severe astrogliosis, which likely occurs through disruptions in output genes that keep oxidative stress in check. This study demonstrates the importance of proper circadian protein function in the maintenance of neuronal integrity.

Authors

Colleen A. McClung

×

Figure 1

Crosstalk between the transcriptional and peroxiredoxin cycles.

Options: View larger image (or click on image) Download as PowerPoint
Crosstalk between the transcriptional and peroxiredoxin cycles.
CLOCK or...
CLOCK or NPAS2 (yellow) and BMAL1 (aqua), which make up the positive limb of the circadian clock, control the expression of negative limb proteins Period (PER) (blue) and cryptochrome (CRY) (orange), which feed back to inhibit the activity of the positive limb. CLOCK(NPAS2)/BMAL1 controls the expression of several output genes (such as Nqo1 and Aldh2) that influence the rhythm in ROS accumulation in the peroxiredoxin cycle. The ratio of NAD(P) to NAD(P)H as an output of this cycle influences SIRT1 (purple) activity (which is NAD+ dependent). When bound to NAD+, SIRT1 regulates the activity of CLOCK (NPAS2):BMAL1 heterodimers.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts