Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Ubiquitin conjugation by the N-end rule pathway and mRNAs for its components increase in muscles of diabetic rats
Stewart H. Lecker, … , William E. Mitch, Alfred L. Goldberg
Stewart H. Lecker, … , William E. Mitch, Alfred L. Goldberg
Published November 15, 1999
Citation Information: J Clin Invest. 1999;104(10):1411-1420. https://doi.org/10.1172/JCI7300.
View: Text | PDF
Article

Ubiquitin conjugation by the N-end rule pathway and mRNAs for its components increase in muscles of diabetic rats

  • Text
  • PDF
Abstract

Insulin deficiency (e.g., in acute diabetes or fasting) is associated with enhanced protein breakdown in skeletal muscle leading to muscle wasting. Because recent studies have suggested that this increased proteolysis is due to activation of the ubiquitin-proteasome (Ub-proteasome) pathway, we investigated whether diabetes is associated with an increased rate of Ub conjugation to muscle protein. Muscle extracts from streptozotocin-induced insulin-deficient rats contained greater amounts of Ub-conjugated proteins than extracts from control animals and also 40–50% greater rates of conjugation of 125I-Ub to endogenous muscle proteins. This enhanced Ub-conjugation occurred mainly through the N-end rule pathway that involves E214k and E3α. A specific substrate of this pathway, α-lactalbumin, was ubiquitinated faster in the diabetic extracts, and a dominant negative form of E214k inhibited this increase in ubiquitination rates. Both E214k and E3α were shown to be rate-limiting for Ub conjugation because adding small amounts of either to extracts stimulated Ub conjugation. Furthermore, mRNA for E214k and E3α (but not E1) were elevated 2-fold in muscles from diabetic rats, although no significant increase in E214k and E3α content could be detected by immunoblot or activity assays. The simplest interpretation of these results is that small increases in both E214k and E3α in muscles of insulin-deficient animals together accelerate Ub conjugation and protein degradation by the N-end rule pathway, the same pathway activated in cancer cachexia, sepsis, and hyperthyroidism.

Authors

Stewart H. Lecker, Vered Solomon, S. Russ Price, Yong Tae Kwon, William E. Mitch, Alfred L. Goldberg

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 687 38
PDF 58 11
Figure 282 6
Table 39 0
Citation downloads 69 0
Totals 1,135 55
Total Views 1,190
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts