Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Vitamin B12–dependent taurine synthesis regulates growth and bone mass
Pablo Roman-Garcia, Isabel Quiros-Gonzalez, Lynda Mottram, Liesbet Lieben, Kunal Sharan, Arporn Wangwiwatsin, Jose Tubio, Kirsty Lewis, Debbie Wilkinson, Balaji Santhanam, Nazan Sarper, Simon Clare, George S. Vassiliou, Vidya R. Velagapudi, Gordon Dougan, Vijay K. Yadav
Pablo Roman-Garcia, Isabel Quiros-Gonzalez, Lynda Mottram, Liesbet Lieben, Kunal Sharan, Arporn Wangwiwatsin, Jose Tubio, Kirsty Lewis, Debbie Wilkinson, Balaji Santhanam, Nazan Sarper, Simon Clare, George S. Vassiliou, Vidya R. Velagapudi, Gordon Dougan, Vijay K. Yadav
View: Text | PDF
Research Article Bone biology

Vitamin B12–dependent taurine synthesis regulates growth and bone mass

  • Text
  • PDF
Abstract

Both maternal and offspring-derived factors contribute to lifelong growth and bone mass accrual, although the specific role of maternal deficiencies in the growth and bone mass of offspring is poorly understood. In the present study, we have shown that vitamin B12 (B12) deficiency in a murine genetic model results in severe postweaning growth retardation and osteoporosis, and the severity and time of onset of this phenotype in the offspring depends on the maternal genotype. Using integrated physiological and metabolomic analysis, we determined that B12 deficiency in the offspring decreases liver taurine production and associates with abrogation of a growth hormone/insulin-like growth factor 1 (GH/IGF1) axis. Taurine increased GH-dependent IGF1 synthesis in the liver, which subsequently enhanced osteoblast function, and in B12-deficient offspring, oral administration of taurine rescued their growth retardation and osteoporosis phenotypes. These results identify B12 as an essential vitamin that positively regulates postweaning growth and bone formation through taurine synthesis and suggests potential therapies to increase bone mass.

Authors

Pablo Roman-Garcia, Isabel Quiros-Gonzalez, Lynda Mottram, Liesbet Lieben, Kunal Sharan, Arporn Wangwiwatsin, Jose Tubio, Kirsty Lewis, Debbie Wilkinson, Balaji Santhanam, Nazan Sarper, Simon Clare, George S. Vassiliou, Vidya R. Velagapudi, Gordon Dougan, Vijay K. Yadav

×

Figure 7

Taurine increases IGF1 synthesis from liver and its action in osteoblasts to regulate bone mass.

Options: View larger image (or click on image) Download as PowerPoint
Taurine increases IGF1 synthesis from liver and its action in osteoblast...
(A–D) Liver samples. (A) Levels of methionine and homocysteine in WT, Gif–/–(F2)/VEH, and Gif–/–(F2)/TAU liver. (B) B12-dependent (MTR) and -independent (BHMT) methionine synthesis pathways. (C) Western blot analysis of BHMT levels in WT, Gif–/–(F2)/VEH, and Gif–/–(F2)/TAU liver. Lanes were run contiguously. U.D., undetectable. (D) Levels of betaine and dimethyl-glycine in liver of WT, Gif–/–(F2)/VEH, and Gif–/–(F2)/TAU mice. (E–G) MC3T3-E1 osteoblast cells. Changes in BrdU incorporation (E), IGF1R and ERK phosphorylation (F), and Ccnd1 expression (G) in cells treated for 24 hours with vehicle, OSI906, taurine, or taurine plus OSI906. Lanes in F were run contiguously, and blots were stripped and reprobed with IGF1R or ERK. Relative quantification of pIGF1R and pERK (normalized to IGF1R and ERK, respectively) is shown below. A representative blot from 3 different experiments is shown. (H) Growth curve analysis of WT and Gif–/–(F2)/TAU+OSI906 mice (n = 5 each). (I) Bone mass analysis (BV/TV) in the vertebra of WT and Gif–/–(F2)/TAU+OSI906 mice (n = 5 per group). (J) Gut/liver/bone endocrine axis, illustrating GH/STAT5/B12-dependent changes in serum IGF1 and taurine that regulate osteoblast proliferation and bone mass. *P < 0.05; #P < 0.01. Values are mean ± SEM. Scale bar: 500 μm. See also Supplemental Figure 7.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts