Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Vitamin B12–dependent taurine synthesis regulates growth and bone mass
Pablo Roman-Garcia, … , Gordon Dougan, Vijay K. Yadav
Pablo Roman-Garcia, … , Gordon Dougan, Vijay K. Yadav
Published June 9, 2014
Citation Information: J Clin Invest. 2014;124(7):2988-3002. https://doi.org/10.1172/JCI72606.
View: Text | PDF
Research Article Bone biology

Vitamin B12–dependent taurine synthesis regulates growth and bone mass

  • Text
  • PDF
Abstract

Both maternal and offspring-derived factors contribute to lifelong growth and bone mass accrual, although the specific role of maternal deficiencies in the growth and bone mass of offspring is poorly understood. In the present study, we have shown that vitamin B12 (B12) deficiency in a murine genetic model results in severe postweaning growth retardation and osteoporosis, and the severity and time of onset of this phenotype in the offspring depends on the maternal genotype. Using integrated physiological and metabolomic analysis, we determined that B12 deficiency in the offspring decreases liver taurine production and associates with abrogation of a growth hormone/insulin-like growth factor 1 (GH/IGF1) axis. Taurine increased GH-dependent IGF1 synthesis in the liver, which subsequently enhanced osteoblast function, and in B12-deficient offspring, oral administration of taurine rescued their growth retardation and osteoporosis phenotypes. These results identify B12 as an essential vitamin that positively regulates postweaning growth and bone formation through taurine synthesis and suggests potential therapies to increase bone mass.

Authors

Pablo Roman-Garcia, Isabel Quiros-Gonzalez, Lynda Mottram, Liesbet Lieben, Kunal Sharan, Arporn Wangwiwatsin, Jose Tubio, Kirsty Lewis, Debbie Wilkinson, Balaji Santhanam, Nazan Sarper, Simon Clare, George S. Vassiliou, Vidya R. Velagapudi, Gordon Dougan, Vijay K. Yadav

×

Figure 4

Metabolomics analysis identifies taurine as a critical metabolite that connects B12 deficiency with GH signaling.

Options: View larger image (or click on image) Download as PowerPoint
Metabolomics analysis identifies taurine as a critical metabolite that c...
(A) Supervised hierarchical clustering plot of up- or downregulated metabolites in Gif–/–(F2) liver. Metabolites regulated by GH in hepatocytes are shown in red font. (B) Summary plot for quantitative enrichment analysis. Metabolite sets are ranked according to false discovery rate (FDR); dashed lines show FDR value cutoffs. (C) Metabolome view reflects on the x axis increasing metabolic pathway impact according to the betweenness centrality measure, which shows key nodes in metabolic pathways that have been significantly altered upon B12 deficiency. Colored circles correspond to pathways in B. (D) PLSDA-VIP plot. Metabolites are ranked according to their increasing importance to group separation between WT and Gif–/–(F2) mice. (E) Measurement of taurine and its derivatives in WT/VEH, Gif–/–(F2)/VEH, and Gif–/–(F2)/B12 liver (n = 5 per group). #P < 0.05; *P < 0.01. Values are mean ± SEM. See also Supplemental Figure 4.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts