The metabolism of cancer cells differs from most normal cells, but how to exploit this difference for patient benefit is incompletely understood. Cancer cells require altered metabolism to efficiently incorporate nutrients into biomass and support abnormal proliferation. In addition, the survival of tumor cells outside of a normal tissue context requires adaptation of metabolism to different microenvironments. Some existing chemotherapies target metabolic enzymes, and there is a resurgent interest in developing new cancer drugs that interfere with metabolism. Success with this approach depends on understanding why specific metabolic pathways are important for cancer cells, determining how best to select patients, and developing technologies for monitoring patient response to therapies that target metabolic enzymes. The articles in this Review series address these issues, with a focus on how altered metabolism might influence tumor progression and how this knowledge might inform the use of new therapies targeting cancer metabolism. Emerging biomarker strategies to guide drug development are also highlighted.
Matthew G. Vander Heiden
Usage data is cumulative from September 2023 through September 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 459 | 152 |
112 | 23 | |
Citation downloads | 37 | 0 |
Totals | 608 | 175 |
Total Views | 783 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.