Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
REEPing the benefits of an animal model of hereditary spastic paraplegia
Ariel Y. Deutch, … , Peter Hedera, Roger J. Colbran
Ariel Y. Deutch, … , Peter Hedera, Roger J. Colbran
Published September 24, 2013
Citation Information: J Clin Invest. 2013;123(10):4134-4136. https://doi.org/10.1172/JCI72324.
View: Text | PDF
Commentary

REEPing the benefits of an animal model of hereditary spastic paraplegia

  • Text
  • PDF
Abstract

The hereditary spastic paraplegias (HSPs) are characterized by spasticity of the leg muscles due to axonal degeneration of corticospinal neurons. Beetz et al. report that the core motor phenotype and axonal pathology of HSPs are recapitulated in mice lacking the HSP-associated gene Reep1. REEP1 is shown to regulate ER structure in motor cortex neurons. The Reep1 knockout mouse should be a very useful model in which to study the mechanisms of progressive axon loss in HSPs and other disorders.

Authors

Ariel Y. Deutch, Peter Hedera, Roger J. Colbran

×

Full Text PDF | Download (400.80 KB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts