Interactions between platelets, leukocytes, and activated endothelial cells are important during microvascular occlusion; however, the regulatory mechanisms of these heterotypic cell-cell interactions remain unclear. Here, using intravital microscopy to evaluate mice lacking specific isoforms of the serine/threonine kinase AKT and bone marrow chimeras, we found that hematopoietic cell–associated AKT2 is important for neutrophil adhesion and crawling and neutrophil-platelet interactions on activated endothelial cells during TNF-α–induced venular inflammation. Studies with an AKT2-specific inhibitor and cells isolated from WT and
Jing Li, Kyungho Kim, Eunsil Hahm, Robert Molokie, Nissim Hay, Victor R. Gordeuk, Xiaoping Du, Jaehyung Cho
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 631 | 45 |
71 | 30 | |
Figure | 331 | 11 |
Table | 33 | 0 |
Supplemental data | 203 | 3 |
Citation downloads | 54 | 0 |
Totals | 1,323 | 89 |
Total Views | 1,412 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.