Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Membranous nephropathy: from models to man
Laurence H. Beck Jr., David J. Salant
Laurence H. Beck Jr., David J. Salant
Published June 2, 2014
Citation Information: J Clin Invest. 2014;124(6):2307-2314. https://doi.org/10.1172/JCI72270.
View: Text | PDF
Review Series

Membranous nephropathy: from models to man

  • Text
  • PDF
Abstract

As recently as 2002, most cases of primary membranous nephropathy (MN), a relatively common cause of nephrotic syndrome in adults, were considered idiopathic. We now recognize that MN is an organ-specific autoimmune disease in which circulating autoantibodies bind to an intrinsic antigen on glomerular podocytes and form deposits of immune complexes in situ in the glomerular capillary walls. Here we define the clinical and pathological features of MN and describe the experimental models that enabled the discovery of the major target antigen, the M-type phospholipase A2 receptor 1 (PLA2R). We review the pathophysiology of experimental MN and compare and contrast it with the human disease. We discuss the diagnostic value of serological testing for anti-PLA2R and tissue staining for the redistributed antigen, and their utility for differentiating between primary and secondary MN, and between recurrent MN after kidney transplant and de novo MN. We end with consideration of how knowledge of the antigen might direct future therapeutic strategies.

Authors

Laurence H. Beck Jr., David J. Salant

×

Figure 2

Mechanisms of subepithelial immune deposit formation.

Options: View larger image (or click on image) Download as PowerPoint
Mechanisms of subepithelial immune deposit formation.
Left: Circulating ...
Left: Circulating antibodies can target surface-exposed intrinsic podocyte proteins to form in situ immune deposits. In PLA2R-associated MN, anti-PLA2R autoantibodies likely bind PLA2R at the podocyte surface to cause capping and shedding of the antigen-antibody complex into the underlying GBM. Middle: Cationized circulating proteins, such as cBSA, may traverse the GBM and bind beneath the podocyte as planted antigens by virtue of their charge, and also serve as the target for circulating antibodies. Right: There is experimental evidence that circulating immune complexes may initially deposit on the luminal side of the GBM, dissociate, and reform in a subepithelial position. Ag, antigen.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts