Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Macrophages are required for neonatal heart regeneration
Arin B. Aurora, Enzo R. Porrello, Wei Tan, Ahmed I. Mahmoud, Joseph A. Hill, Rhonda Bassel-Duby, Hesham A. Sadek, Eric N. Olson
Arin B. Aurora, Enzo R. Porrello, Wei Tan, Ahmed I. Mahmoud, Joseph A. Hill, Rhonda Bassel-Duby, Hesham A. Sadek, Eric N. Olson
View: Text | PDF
Research Article

Macrophages are required for neonatal heart regeneration

  • Text
  • PDF
Abstract

Myocardial infarction (MI) leads to cardiomyocyte death, which triggers an immune response that clears debris and restores tissue integrity. In the adult heart, the immune system facilitates scar formation, which repairs the damaged myocardium but compromises cardiac function. In neonatal mice, the heart can regenerate fully without scarring following MI; however, this regenerative capacity is lost by P7. The signals that govern neonatal heart regeneration are unknown. By comparing the immune response to MI in mice at P1 and P14, we identified differences in the magnitude and kinetics of monocyte and macrophage responses to injury. Using a cell-depletion model, we determined that heart regeneration and neoangiogenesis following MI depends on neonatal macrophages. Neonates depleted of macrophages were unable to regenerate myocardia and formed fibrotic scars, resulting in reduced cardiac function and angiogenesis. Immunophenotyping and gene expression profiling of cardiac macrophages from regenerating and nonregenerating hearts indicated that regenerative macrophages have a unique polarization phenotype and secrete numerous soluble factors that may facilitate the formation of new myocardium. Our findings suggest that macrophages provide necessary signals to drive angiogenesis and regeneration of the neonatal mouse heart. Modulating inflammation may provide a key therapeutic strategy to support heart regeneration.

Authors

Arin B. Aurora, Enzo R. Porrello, Wei Tan, Ahmed I. Mahmoud, Joseph A. Hill, Rhonda Bassel-Duby, Hesham A. Sadek, Eric N. Olson

×

Figure 6

Angiogenesis is impaired in monocyte/macrophage-depleted neonates following MI.

Options: View larger image (or click on image) Download as PowerPoint
Angiogenesis is impaired in monocyte/macrophage-depleted neonates follow...
(A) Sections from control or Cl2MDP-L–treated hearts stained with PECAM (red) and Hoechst (blue) to label endothelial cells and nuclei, respectively, 7 days after MI. Vessels are visible in infarct areas (marked by dashed lines) in controls but not in the Cl2MDP-L group. Original magnification, ×10 (top row); ×20 (bottom row). (B–D) The vasculature was visualized by endomucin immunohistochemistry (brown) on serial heart sections starting below the ligature and progressing toward the apex of control and Cl2MDP-L–treated neonates at (B) 7 and (D) 21 days after MI. (B) Two serial heart sections for each mouse show newly forming vessels invading the IZ in control but not Cl2MDP-L–treated neonates, and lines indicate area used to quantify vessel density. (C) Significantly fewer neovessels are present in Cl2MDP-L–treated mice compared with controls. Data are mean ± SEM. ****P < 0.0001. (D) At 21 days after MI, control mice have new myocardia that contain abundant endomucin-positive vasculature, while heart sections from Cl2MDP-L–treated mice contain areas devoid of new vessels. Lines indicate area lacking vessels. Scale bars: 1 mm (top rows); 200 μm (bottom rows).

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts