Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Chemical chaperone ameliorates pathological protein aggregation in plectin-deficient muscle
Lilli Winter, … , Rolf Schröder, Gerhard Wiche
Lilli Winter, … , Rolf Schröder, Gerhard Wiche
Published February 3, 2014
Citation Information: J Clin Invest. 2014;124(3):1144-1157. https://doi.org/10.1172/JCI71919.
View: Text | PDF
Research Article Muscle biology

Chemical chaperone ameliorates pathological protein aggregation in plectin-deficient muscle

  • Text
  • PDF
Abstract

The ubiquitously expressed multifunctional cytolinker protein plectin is essential for muscle fiber integrity and myofiber cytoarchitecture. Patients suffering from plectinopathy-associated epidermolysis bullosa simplex with muscular dystrophy (EBS-MD) and mice lacking plectin in skeletal muscle display pathological desmin-positive protein aggregation and misalignment of Z-disks, which are hallmarks of myofibrillar myopathies (MFMs). Here, we developed immortalized murine myoblast cell lines to examine the pathogenesis of plectinopathies at the molecular and single cell level. Plectin-deficient myotubes, derived from myoblasts, were fully functional and mirrored the pathological features of EBS-MD myofibers, including the presence of desmin-positive protein aggregates and a concurrent disarrangement of the myofibrillar apparatus. Using this cell model, we demonstrated that plectin deficiency leads to increased intermediate filament network and sarcomere dynamics, marked upregulation of HSPs, and reduced myotube resilience following mechanical stretch. Currently, no specific therapy or treatment is available to improve plectin-related or other forms of MFMs; therefore, we assessed the therapeutic potential of chemical chaperones to relieve plectinopathies. Treatment with 4-phenylbutyrate resulted in remarkable amelioration of the pathological phenotypes in plectin-deficient myotubes as well as in plectin-deficient mice. Together, these data demonstrate the biological relevance of the MFM cell model and suggest that this model has potential use for the development of therapeutic approaches for EBS-MD.

Authors

Lilli Winter, Ilona Staszewska, Eva Mihailovska, Irmgard Fischer, Wolfgang H. Goldmann, Rolf Schröder, Gerhard Wiche

×

Figure 4

Dynamics of GFP-labeled desmin and α-actinin in differentiated myotubes monitored by FRAP analyses.

Options: View larger image (or click on image) Download as PowerPoint
Dynamics of GFP-labeled desmin and α-actinin in differentiated myotubes ...
(A and B) Representative (A) desmin-GFP– or (B) α-actinin–GFP–expressing Plec+/+ and Plec–/– myotubes (differentiation for 10 days) are shown prior to photobleaching, immediately after photobleaching, and after 10 and 28 minutes of recovery. Bleached areas are indicated by boxes. Scale bars: 10 μm. (C) FRAP analyses of desmin-GFP in Plec+/+ and Plec–/– myotubes differentiated for 5 or 10 days. Mean ± SEM, 2 experiments (5 days of differentiation: Plec+/+, n = 25 analyzed ROIs; Plec–/–, n = 21 analyzed ROIs; 10 days of differentiation: Plec+/+, n = 54 analyzed ROIs; Plec–/–, n = 55 analyzed ROIs). (D) FRAP analysis of α-actinin–GFP under conditions similar to those in C. Mean ± SEM, 2 experiments (5 days of differentiation: Plec+/+, n = 25 analyzed ROIs; Plec–/–, n = 26 analyzed ROIs; 10 days of differentiation: Plec+/+, n = 38 analyzed ROIs; Plec–/–, n = 45 analyzed ROIs).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts