Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Intravital imaging of podocyte calcium in glomerular injury and disease
James L. Burford, … , Stuart J. Shankland, János Peti-Peterdi
James L. Burford, … , Stuart J. Shankland, János Peti-Peterdi
Published April 8, 2014
Citation Information: J Clin Invest. 2014;124(5):2050-2058. https://doi.org/10.1172/JCI71702.
View: Text | PDF
Technical Advance Nephrology

Intravital imaging of podocyte calcium in glomerular injury and disease

  • Text
  • PDF
Abstract

Intracellular calcium ([Ca2+]i) signaling mediates physiological and pathological processes in multiple organs, including the renal podocyte; however, in vivo podocyte [Ca2+]i dynamics are not fully understood. Here we developed an imaging approach that uses multiphoton microscopy (MPM) to directly visualize podocyte [Ca2+]i dynamics within the intact kidneys of live mice expressing a fluorescent calcium indicator only in these cells. [Ca2+]i was at a low steady-state level in control podocytes, while Ang II infusion caused a minor elevation. Experimental focal podocyte injury triggered a robust and sustained elevation of podocyte [Ca2+]i around the injury site and promoted cell-to-cell propagating podocyte [Ca2+]i waves along capillary loops. [Ca2+]i wave propagation was ameliorated by inhibitors of purinergic [Ca2+]i signaling as well as in animals lacking the P2Y2 purinergic receptor. Increased podocyte [Ca2+]i resulted in contraction of the glomerular tuft and increased capillary albumin permeability. In preclinical models of renal fibrosis and glomerulosclerosis, high podocyte [Ca2+]i correlated with increased cell motility. Our findings provide a visual demonstration of the in vivo importance of podocyte [Ca2+]i in glomerular pathology and suggest that purinergic [Ca2+]i signaling is a robust and key pathogenic mechanism in podocyte injury. This in vivo imaging approach will allow future detailed investigation of the molecular and cellular mechanisms of glomerular disease in the intact living kidney.

Authors

James L. Burford, Karie Villanueva, Lisa Lam, Anne Riquier-Brison, Matthias J. Hackl, Jeffrey Pippin, Stuart J. Shankland, János Peti-Peterdi

×

Full Text PDF | Download (2.38 MB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts