Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Intravital imaging of podocyte calcium in glomerular injury and disease
James L. Burford, … , Stuart J. Shankland, János Peti-Peterdi
James L. Burford, … , Stuart J. Shankland, János Peti-Peterdi
Published April 8, 2014
Citation Information: J Clin Invest. 2014;124(5):2050-2058. https://doi.org/10.1172/JCI71702.
View: Text | PDF
Technical Advance Nephrology

Intravital imaging of podocyte calcium in glomerular injury and disease

  • Text
  • PDF
Abstract

Intracellular calcium ([Ca2+]i) signaling mediates physiological and pathological processes in multiple organs, including the renal podocyte; however, in vivo podocyte [Ca2+]i dynamics are not fully understood. Here we developed an imaging approach that uses multiphoton microscopy (MPM) to directly visualize podocyte [Ca2+]i dynamics within the intact kidneys of live mice expressing a fluorescent calcium indicator only in these cells. [Ca2+]i was at a low steady-state level in control podocytes, while Ang II infusion caused a minor elevation. Experimental focal podocyte injury triggered a robust and sustained elevation of podocyte [Ca2+]i around the injury site and promoted cell-to-cell propagating podocyte [Ca2+]i waves along capillary loops. [Ca2+]i wave propagation was ameliorated by inhibitors of purinergic [Ca2+]i signaling as well as in animals lacking the P2Y2 purinergic receptor. Increased podocyte [Ca2+]i resulted in contraction of the glomerular tuft and increased capillary albumin permeability. In preclinical models of renal fibrosis and glomerulosclerosis, high podocyte [Ca2+]i correlated with increased cell motility. Our findings provide a visual demonstration of the in vivo importance of podocyte [Ca2+]i in glomerular pathology and suggest that purinergic [Ca2+]i signaling is a robust and key pathogenic mechanism in podocyte injury. This in vivo imaging approach will allow future detailed investigation of the molecular and cellular mechanisms of glomerular disease in the intact living kidney.

Authors

James L. Burford, Karie Villanueva, Lisa Lam, Anne Riquier-Brison, Matthias J. Hackl, Jeffrey Pippin, Stuart J. Shankland, János Peti-Peterdi

×

Figure 4

Podocyte [Ca2+]i imaging in vitro in microperfused glomeruli.

Options: View larger image (or click on image) Download as PowerPoint
Podocyte [Ca2+]i imaging in vitro in microperfused glomeruli.
 
(A) Pseu...
(A) Pseudocolor (gradient map) of GCaMP3 fluorescence intensity from Pod-GCaMP3 mice showed the highly elevated [Ca2+]i in WT podocytes around the site of acute injury, caused mechanically by touching a single podocyte with a glass micropipette (denoted by X). The high [Ca2+]i propagated to adjacent podocyte regions ([Ca2+]i wave) along capillary loops within 10 seconds. Time-lapse imaging of the same glomerulus is shown in Supplemental Video 4. Scale bar: 20 μm. (B) Acute podocyte injury (arrow) induced robust elevation in [Ca2+]i in podocytes, measured by GCaMP3 F/F0, but not in mesangial and endothelial cells (identified based on anatomical features), as measured by Fura Red F/F0, which was used in the same preparation. (C) Magnitude of injury-induced podocyte [Ca2+]i elevations, measured by single GCaMP3 fluorescence (Fmax/F0) or Fluo-4/Fura Red ratiometric (Rmax/R0) methods (n = 7 each). (D) Genetic and pharmacological blockade of the podocyte [Ca2+]i wave. P2Y2 deficiency (n = 7 glomeruli), IP3 receptor blockade with XSC (n = 5), gap junction inhibition with 18α-GA (n = 4), and ATP scavenging with the cocktail of apyrase plus hexokinase (n = 4) all significantly reduced the magnitude (Fmax/F0) and velocity of the [Ca2+]i wave compared with WT controls (n = 5). Data represent mean ± SEM. *P < 0.05 vs. WT.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts