Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Reducing dynamin 2 expression rescues X-linked centronuclear myopathy
Belinda S. Cowling, … , Norma B. Romero, Jocelyn Laporte
Belinda S. Cowling, … , Norma B. Romero, Jocelyn Laporte
Published February 24, 2014
Citation Information: J Clin Invest. 2014;124(3):1350-1363. https://doi.org/10.1172/JCI71206.
View: Text | PDF
Research Article

Reducing dynamin 2 expression rescues X-linked centronuclear myopathy

  • Text
  • PDF
Abstract

Centronuclear myopathies (CNM) are congenital disorders associated with muscle weakness and abnormally located nuclei in skeletal muscle. An autosomal dominant form of CNM results from mutations in the gene encoding dynamin 2 (DNM2), and loss-of-function mutations in the gene encoding myotubularin (MTM1) result in X-linked CNM (XLCNM, also called myotubular myopathy), which promotes severe neonatal hypotonia and early death. Currently, no effective treatments exist for XLCNM. Here, we found increased DNM2 levels in XLCNM patients and a mouse model of XLCNM (Mtm1–/y). Generation of Mtm1–/y mice that were heterozygous for Dnm2 revealed that reduction of DNM2 in XLCNM mice restored life span, whole-body strength, and diaphragm function and increased muscle strength. Additionally, classic CNM-associated histological features, including fiber atrophy and nuclei mispositioning, were absent or reduced. Ultrastructural analysis revealed improvement of sarcomere organization and triad structures. Skeletal muscle–specific decrease of Dnm2 during embryogenesis or in young mice after disease onset revealed that the rescue associated with downregulation of Dnm2 is cell autonomous and is able to stop and potentially revert XLCNM progression. These data indicate that MTM1 and DNM2 regulate muscle organization and force through a common pathway. Furthermore, despite DNM2 being a key mechanoenzyme, its reduction is beneficial for XLCNM and represents a potential therapeutic approach for patients.

Authors

Belinda S. Cowling, Thierry Chevremont, Ivana Prokic, Christine Kretz, Arnaud Ferry, Catherine Coirault, Olga Koutsopoulos, Vincent Laugel, Norma B. Romero, Jocelyn Laporte

×

Figure 3

CNM histological features are greatly rescued in Mtm1–/y mice with reduced DNM2 expression.

Options: View larger image (or click on image) Download as PowerPoint
CNM histological features are greatly rescued in Mtm1–/y mice with reduc...
Transverse TA sections from 8-week-old (A) or 16-week-old (C) mice were stained with H&E (upper panel) or SDH (lower panel). Scale bars: 300 μm; 25 μm (high magnification). (B) Transverse muscle sections from 8-week-old mice viewed by TEM. Arrow indicates membrane accumulation around nucleus. Scale bar: 0.5 μm. Transverse TA muscle sections from 8-week-old mice (D) and 16-week-old (E) mice were analyzed for fiber area. Fiber size is grouped into 500-μmβ intervals, and represented as the percentage of total fibers. n = 5–7 mice. (F) The frequency of fibers with internal or central nuclei was scored. n = 5 mice. Internal nuclei are defined as not subsarcolemmal or central. Images were not analyzed in Mtm1–/y mice at 16 weeks, as they usually die before this age. All graphs depict mean ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts