Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis
Ilse Daehn, … , Borje Haraldsson, Erwin P. Bottinger
Ilse Daehn, … , Borje Haraldsson, Erwin P. Bottinger
Published March 3, 2014
Citation Information: J Clin Invest. 2014;124(4):1608-1621. https://doi.org/10.1172/JCI71195.
View: Text | PDF
Research Article Nephrology

Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis

  • Text
  • PDF
Abstract

Focal segmental glomerular sclerosis (FSGS) is a primary kidney disease that is commonly associated with proteinuria and progressive loss of glomerular function, leading to development of chronic kidney disease (CKD). FSGS is characterized by podocyte injury and depletion and collapse of glomerular capillary segments. Progression of FSGS is associated with TGF-β activation in podocytes; however, it is not clear how TGF-β signaling promotes disease. Here, we determined that podocyte-specific activation of TGF-β signaling in transgenic mice and BALB/c mice with Adriamycin-induced glomerulosclerosis is associated with endothelin-1 (EDN1) release by podocytes, which mediates mitochondrial oxidative stress and dysfunction in adjacent endothelial cells via paracrine EDN1 receptor type A (EDNRA) activation. Endothelial dysfunction promoted podocyte apoptosis, and inhibition of EDNRA or scavenging of mitochondrial-targeted ROS prevented podocyte loss, albuminuria, glomerulosclerosis, and renal failure. We confirmed reciprocal crosstalk between podocytes and endothelial cells in a coculture system. Biopsies from patients with FSGS exhibited increased mitochondrial DNA damage, consistent with EDNRA-mediated glomerular endothelial mitochondrial oxidative stress. Our studies indicate that segmental glomerulosclerosis develops as a result of podocyte-endothelial crosstalk mediated by EDN1/EDNRA-dependent mitochondrial dysfunction and suggest that targeting the reciprocal interaction between podocytes and endothelia may provide opportunities for therapeutic intervention in FSGS.

Authors

Ilse Daehn, Gabriella Casalena, Taoran Zhang, Shaolin Shi, Franz Fenninger, Nicholas Barasch, Liping Yu, Vivette D’Agati, Detlef Schlondorff, Wilhelm Kriz, Borje Haraldsson, Erwin P. Bottinger

×

Figure 2

TGFβR1 signaling in podocyte-induced albuminuria is reversible at days 7 and 10 but not day 14 of Dox treatment.

Options: View larger image (or click on image) Download as PowerPoint
TGFβR1 signaling in podocyte-induced albuminuria is reversible at days 7...
(A) ACR in PodTgfbr1 mice treated with Dox (days 0–14) (>10 mice per time point). Arrows indicate Dox withdrawal at day 7, day 10, or day 14 for mice returned to normal diet (n = 6 per time point; mean ± SEM). (B) Representative image of a PodTgfbr1 mouse with 2 weeks of recovery after days 10 of Dox withdrawal. (C) Representative image of a PodTgfbr1 mouse with 3 weeks of recovery after days 14 of Dox withdrawal. *P < 0.05, **P < 0.01, ***P < 0.001 versus controls; ##P < 0.01 versus time of Dox withdrawal, i.e., 7 days and 10 days. Original magnification, ×40 (B and C).

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts