Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Impaired kisspeptin signaling decreases metabolism and promotes glucose intolerance and obesity
Kristen P. Tolson, … , Jeremy T. Smith, Alexander S. Kauffman
Kristen P. Tolson, … , Jeremy T. Smith, Alexander S. Kauffman
Published June 17, 2014
Citation Information: J Clin Invest. 2014;124(7):3075-3079. https://doi.org/10.1172/JCI71075.
View: Text | PDF
Brief Report

Impaired kisspeptin signaling decreases metabolism and promotes glucose intolerance and obesity

  • Text
  • PDF
Abstract

The neuropeptide kisspeptin regulates reproduction by stimulating gonadotropin-releasing hormone (GnRH) neurons via the kisspeptin receptor KISS1R. In addition to GnRH neurons, KISS1R is expressed in other brain areas and peripheral tissues, which suggests that kisspeptin has additional functions beyond reproduction. Here, we studied the energetic and metabolic phenotype in mice lacking kisspeptin signaling (Kiss1r KO mice). Compared with WT littermates, adult Kiss1r KO females displayed dramatically higher BW, leptin levels, and adiposity, along with strikingly impaired glucose tolerance. Conversely, male Kiss1r KO mice had normal BW and glucose regulation. Surprisingly, despite their obesity, Kiss1r KO females ate less than WT females; however, Kiss1r KO females displayed markedly reduced locomotor activity, respiratory rate, and energy expenditure, which were not due to impaired thyroid hormone secretion. The BW and metabolic phenotype in Kiss1r KO females was not solely reflective of absent gonadal estrogen, as chronically ovariectomized Kiss1r KO females developed obesity, hyperleptinemia, reduced metabolism, and glucose intolerance compared with ovariectomized WT females. Our findings demonstrate that in addition to reproduction, kisspeptin signaling influences BW, energy expenditure, and glucose homeostasis in a sexually dimorphic and partially sex steroid–independent manner; therefore, alterations in kisspeptin signaling might contribute, directly or indirectly, to some facets of human obesity, diabetes, or metabolic dysfunction.

Authors

Kristen P. Tolson, Christian Garcia, Stephanie Yen, Stephanie Simonds, Aneta Stefanidis, Alison Lawrence, Jeremy T. Smith, Alexander S. Kauffman

×

Figure 1

BW, body composition, leptin level, and glucose tolerance of Kiss1r KO mice fed standard chow.

Options: View larger image (or click on image) Download as PowerPoint
BW, body composition, leptin level, and glucose tolerance of Kiss1r KO m...
BW of females (A) and males (D). DEXA measurements of fat mass and lean mass in adult females (B) and males (E). Serum leptin (raw and corrected for fat) in adult females (C) and males (F). GTT and area under the curve (AUC) in adult females (G and I) and males (H and J). *P < 0.05 vs. WT; †P < 0.05 vs. Het. WT and Het mice did not differ significantly on any measure.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts