Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis
Marieta Caganova, … , I-hsin Su, Stefano Casola
Marieta Caganova, … , I-hsin Su, Stefano Casola
Published November 8, 2013
Citation Information: J Clin Invest. 2013;123(12):5009-5022. https://doi.org/10.1172/JCI70626.
View: Text | PDF | Corrigendum
Research Article Immunology

Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis

  • Text
  • PDF
Abstract

Protection against deadly pathogens requires the production of high-affinity antibodies by B cells, which are generated in germinal centers (GCs). Alteration of the GC developmental program is common in many B cell malignancies. Identification of regulators of the GC response is crucial to develop targeted therapies for GC B cell dysfunctions, including lymphomas. The histone H3 lysine 27 methyltransferase enhancer of zeste homolog 2 (EZH2) is highly expressed in GC B cells and is often constitutively activated in GC-derived non-Hodgkin lymphomas (NHLs). The function of EZH2 in GC B cells remains largely unknown. Herein, we show that Ezh2 inactivation in mouse GC B cells caused profound impairment of GC responses, memory B cell formation, and humoral immunity. EZH2 protected GC B cells against activation-induced cytidine deaminase (AID) mutagenesis, facilitated cell cycle progression, and silenced plasma cell determinant and tumor suppressor B-lymphocyte–induced maturation protein 1 (BLIMP1). EZH2 inhibition in NHL cells induced BLIMP1, which impaired tumor growth. In conclusion, EZH2 sustains AID function and prevents terminal differentiation of GC B cells, which allows antibody diversification and affinity maturation. Dysregulation of the GC reaction by constitutively active EZH2 facilitates lymphomagenesis and identifies EZH2 as a possible therapeutic target in NHL and other GC-derived B cell diseases.

Authors

Marieta Caganova, Chiara Carrisi, Gabriele Varano, Federica Mainoldi, Federica Zanardi, Pierre-Luc Germain, Laura George, Federica Alberghini, Luca Ferrarini, Asoke K. Talukder, Maurilio Ponzoni, Giuseppe Testa, Takuya Nojima, Claudio Doglioni, Daisuke Kitamura, Kai-M. Toellner, I-hsin Su, Stefano Casola

×

Figure 1

EZH2 is upregulated in mouse GC B cells and required for GC formation.

Options: View larger image (or click on image) Download as PowerPoint
EZH2 is upregulated in mouse GC B cells and required for GC formation.
(...
(A) Ezh2 transcript levels in B cell subsets relative to Rplp0. Columns represent mean ± SD of triplicates. Experiments were performed on pools of B cells sorted from 3 mice. (B) FACS analysis of EZH2 protein levels in follicular (FO) and GC B cells. Numbers indicate mean expression. (C) Representative FACS analysis of splenic B cells in NP-CGG–immunized Ezh2 control (Ezh2fl/+:Cγ1-cre) and mutant (Ezh2fl/fl:Cγ1-cre) mice. Numbers indicate percentage of boxed GC B cells. (D) Frequency of splenic GC B cells in NP-CGG–immunized Ezh2 control (Ezh2fl/+:Cγ1-cre [Ezh2+/–]; n = 17) and mutant (Ezh2fl/fl:Cγ1-cre [Ezh2–/–]; n = 22) mice. Symbols represent individual mice; bars refer to mean values. *P = 0.013 (t test). (E) Representative histological analysis of PNA-positive (brown) GCs (arrowheads) in the spleens of NP-CGG–immunized Ezh2 control (Ezh2fl/+:Cγ1-cre; n = 6) and mutant (Ezh2fl/fl:Cγ1-cre; n = 6) mice. Scale bar: 200 μm. (F) Frequency of Ezh2 inactivation in GC B cells of Ezh2 control (Ezh2fl/+:Cγ1-cre; n = 3) and mutant (Ezh2fl/fl:Cγ1-cre; n = 4) animals, quantified by genomic qPCR. (G) Frequency of YFP+ GC B cells in R26-yfp;Ezh2 control (Ezh2fl/+) and mutant (Ezh2fl/fl) mice. (H) Summary of data on frequencies of YFP+ GC B cells in R26-yfp;Cγ1-cre;Ezh2 control (n = 4) and mutant (n = 6) mice. (F and H) Columns indicate mean ± SD. **P = 0.002 (t test). Data represent (C and D) 10, (G) 5, (F, and H) 3, and (B, E, and F) 2 experiments, respectively.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts