Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
FGF18 as a prognostic and therapeutic biomarker in ovarian cancer
Wei Wei, Samuel C. Mok, Esther Oliva, Sung-hoon Kim, Gayatry Mohapatra, Michael J. Birrer
Wei Wei, Samuel C. Mok, Esther Oliva, Sung-hoon Kim, Gayatry Mohapatra, Michael J. Birrer
View: Text | PDF
Research Article Oncology

FGF18 as a prognostic and therapeutic biomarker in ovarian cancer

  • Text
  • PDF
Abstract

High-throughput genomic technologies have identified biomarkers and potential therapeutic targets for ovarian cancer. Comprehensive functional validation studies of the biological and clinical implications of these biomarkers are needed to advance them toward clinical use. Amplification of chromosomal region 5q31–5q35.3 has been used to predict poor prognosis in patients with advanced stage, high-grade serous ovarian cancer. In this study, we further dissected this large amplicon and identified the overexpression of FGF18 as an independent predictive marker for poor clinical outcome in this patient population. Using cell culture and xenograft models, we show that FGF18 signaling promoted tumor progression by modulating the ovarian tumor aggressiveness and microenvironment. FGF18 controlled migration, invasion, and tumorigenicity of ovarian cancer cells through NF-κB activation, which increased the production of oncogenic cytokines and chemokines. This resulted in a tumor microenvironment characterized by enhanced angiogenesis and augmented tumor-associated macrophage infiltration and M2 polarization. Tumors from ovarian cancer patients had increased FGF18 expression levels with microvessel density and M2 macrophage infiltration, confirming our in vitro results. These findings demonstrate that FGF18 is important for a subset of ovarian cancers and may serve as a therapeutic target.

Authors

Wei Wei, Samuel C. Mok, Esther Oliva, Sung-hoon Kim, Gayatry Mohapatra, Michael J. Birrer

×

Figure 1

Identification of FGF18 as a prognostic gene in high-grade advanced-stage papillary serous ovarian tumors.

Options: View larger image (or click on image) Download as PowerPoint
Identification of FGF18 as a prognostic gene in high-grade advanced-stag...
(A) Kaplan-Meier analysis of FGF18 expression in patients in 3 independent sets of serous ovarian cancer samples (Mok et al., ref. 5; Spentzos et al., ref. 3, and TCGA Project, ref. 6). Analysis was done by median cut with the P value of log-rank test presented for each set. Black lines, samples with low FGF18; red broken lines, samples with high FGF18; +, censored samples. (B) Overexpression of FGF18 in ovarian HGSC (n = 53) over normal OSE (n = 10) and FTE (n = 24). Array data import and normalization were performed by BRB array tools 4.1 with JustRMA algorithm. Values on y axis represent the cumulative intensity of all FGF18 probe sets. (C) CGH analysis of 72 serous ovarian tumors showed an increased DNA copy number for chromosome segment 5q31.3–5q35.3 in approximately 25% of the samples (upper panel). Chromosome 5 profiles of 2 representative tumors with the detail of a 7.3-Mb locus (chromosome 5 distance: 170.3 Mb–177.6 Mb) containing FGF18 and FGFR4 (lower panel). Copy number was presented by log2 minus 1 (value of 0 mean diploid, 1 mean 4 copies, 2 mean 8 copies). FGF18 and FGFR4 are amplified to at least 4 copies among the 5615 probes in the x axis. (D) qPCR correlation with array CGH data for all 60 available DNA samples of the 72 serous tumors. Average qPCR fold changes were generated by 3 independent primer sets for FGF18 and FGFR4. Correlation was checked by Spearman’s ρ test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts