Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Agonistic induction of PPARγ reverses cigarette smoke–induced emphysema
Ming Shan, … , David B. Corry, Farrah Kheradmand
Ming Shan, … , David B. Corry, Farrah Kheradmand
Published February 24, 2014
Citation Information: J Clin Invest. 2014;124(3):1371-1381. https://doi.org/10.1172/JCI70587.
View: Text | PDF
Research Article

Agonistic induction of PPARγ reverses cigarette smoke–induced emphysema

  • Text
  • PDF
Abstract

The development of emphysema in humans and mice exposed to cigarette smoke is promoted by activation of an adaptive immune response. Lung myeloid dendritic cells (mDCs) derived from cigarette smokers activate autoreactive Th1 and Th17 cells. mDC-dependent activation of T cell subsets requires expression of the SPP1 gene, which encodes osteopontin (OPN), a pleiotropic cytokine implicated in autoimmune responses. The upstream molecular events that promote SPP1 expression and activate mDCs in response to smoke remain unknown. Here, we show that peroxisome proliferator–activated receptor γ (PPARG/Pparg) expression was downregulated in mDCs of smokers with emphysema and mice exposed to chronic smoke. Conditional knockout of PPARγ in APCs using Cd11c-Cre Ppargflox/flox mice led to spontaneous lung inflammation and emphysema that resembled the phenotype of smoke-exposed mice. The inflammatory phenotype of Cd11c-Cre Ppargflox/flox mice required OPN, suggesting an antiinflammatory mechanism in which PPARγ negatively regulates Spp1 expression in the lung. A 2-month treatment with a PPARγ agonist reversed emphysema in WT mice despite continual smoke exposure. Furthermore, endogenous PPARγ agonists were reduced in the plasma of smokers with emphysema. These findings reveal a proinflammatory pathway, in which reduced PPARγ activity promotes emphysema, and suggest that targeting this pathway in smokers could prevent and reverse emphysema.

Authors

Ming Shan, Ran You, Xiaoyi Yuan, Michael V. Frazier, Paul Porter, Alexander Seryshev, Jeong-Soo Hong, Li-zhen Song, Yiqun Zhang, Susan Hilsenbeck, Lawrence Whitehead, Nazanin Zarinkamar, Sarah Perusich, David B. Corry, Farrah Kheradmand

×

Figure 3

Spp1 deficiency impedes spontaneous emphysema development in the absence of PPARγ.

Options: View larger image (or click on image) Download as PowerPoint

Spp1 deficiency impedes spontaneous emphysema development in the absenc...
(A) H&E staining of lung sections showing airway enlargement and inflammation. Data are representative of three independent studies (n = 4 in each group). Scale bars: 400 μm (insets: 100 μm). (B) Micro-CT quantification of lung volume in 6-month-old Ppargflox/flox (WT), CD11c-Cre Ppargflox/flox, and CD11c-Cre Ppargflox/flox Spp1–/– mice (n = 4 per group). *P < 0.02, by 1-way ANOVA and Bonferroni’s multiple comparison test. (C) MLI measurements in the same group of mice were obtained using unbiased morphometry. ***P < 0.001, *P < 0.01, by 1-way ANOVA and Bonferroni’s multiple comparison test. (D) BAL fluid analysis from the same mice (n = 4 in each group). **P < 0.002, *P < 0.01, as determined by 1-way ANOVA and Bonferroni’s multiple comparison test. (E) Mmp12 mRNA expression in total BAL fluid cells (n = 4 in each group) (normalized to 18S expression). *P < 0.04, by 1-way ANOVA and Bonferroni’s multiple comparison test. (F) Representative ICC staining of IL-17A and IFN-γ from CD3+/CD4+ T cells (n = 4 in each group). Numbers in each quadrant indicate the percentage of positive cells for the indicated cytokines. (G) Cumulative data from two independent studies showing the relative abundance of Th17 cells in the lungs, as determined in E (n = 4 in the Ppargflox/flox and CD11c-Cre Ppargflox/flox Spp1–/– group and n = 7 in the CD11c-Cre Ppargflox/flox group). *P < 0.01, by 1-way ANOVA and Bonferroni’s multiple comparison test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts