Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Targeting ER stress–induced autophagy overcomes BRAF inhibitor resistance in melanoma
Xiao-Hong Ma, Sheng-Fu Piao, Souvik Dey, Quentin Mcafee, Giorgos Karakousis, Jessie Villanueva, Lori S. Hart, Samuel Levi, Janice Hu, Gao Zhang, Rossitza Lazova, Vincent Klump, John M. Pawelek, Xiaowei Xu, Wei Xu, Lynn M. Schuchter, Michael A. Davies, Meenhard Herlyn, Jeffrey Winkler, Constantinos Koumenis, Ravi K. Amaravadi
Xiao-Hong Ma, Sheng-Fu Piao, Souvik Dey, Quentin Mcafee, Giorgos Karakousis, Jessie Villanueva, Lori S. Hart, Samuel Levi, Janice Hu, Gao Zhang, Rossitza Lazova, Vincent Klump, John M. Pawelek, Xiaowei Xu, Wei Xu, Lynn M. Schuchter, Michael A. Davies, Meenhard Herlyn, Jeffrey Winkler, Constantinos Koumenis, Ravi K. Amaravadi
View: Text | PDF
Research Article

Targeting ER stress–induced autophagy overcomes BRAF inhibitor resistance in melanoma

  • Text
  • PDF
Abstract

Melanomas that result from mutations in the gene encoding BRAF often become resistant to BRAF inhibition (BRAFi), with multiple mechanisms contributing to resistance. While therapy-induced autophagy promotes resistance to a number of therapies, especially those that target PI3K/mTOR signaling, its role as an adaptive resistance mechanism to BRAFi is not well characterized. Using tumor biopsies from BRAFV600E melanoma patients treated either with BRAFi or with combined BRAF and MEK inhibition, we found that BRAFi-resistant tumors had increased levels of autophagy compared with baseline. Patients with higher levels of therapy-induced autophagy had drastically lower response rates to BRAFi and a shorter duration of progression-free survival. In BRAFV600E melanoma cell lines, BRAFi or BRAF/MEK inhibition induced cytoprotective autophagy, and autophagy inhibition enhanced BRAFi-induced cell death. Shortly after BRAF inhibitor treatment in melanoma cell lines, mutant BRAF bound the ER stress gatekeeper GRP78, which rapidly expanded the ER. Disassociation of GRP78 from the PKR-like ER-kinase (PERK) promoted a PERK-dependent ER stress response that subsequently activated cytoprotective autophagy. Combined BRAF and autophagy inhibition promoted tumor regression in BRAFi-resistant xenografts. These data identify a molecular pathway for drug resistance connecting BRAFi, the ER stress response, and autophagy and provide a rationale for combination approaches targeting this resistance pathway.

Authors

Xiao-Hong Ma, Sheng-Fu Piao, Souvik Dey, Quentin Mcafee, Giorgos Karakousis, Jessie Villanueva, Lori S. Hart, Samuel Levi, Janice Hu, Gao Zhang, Rossitza Lazova, Vincent Klump, John M. Pawelek, Xiaowei Xu, Wei Xu, Lynn M. Schuchter, Michael A. Davies, Meenhard Herlyn, Jeffrey Winkler, Constantinos Koumenis, Ravi K. Amaravadi

×

Figure 4

BRAFi induces an early ER stress response.

Options: View larger image (or click on image) Download as PowerPoint
BRAFi induces an early ER stress response.
(A) Immunoblotting against th...
(A) Immunoblotting against the indicated signaling markers after treatment of MEL624 cells with vehicle or 1 μM PLX4720 for the indicated times. P-, phospho-. (B) MEL624 and A375P cells were treated with 1 μM PLX4720 for the indicated times. Whole-cell and nuclear lysates were subjected to immunoblotting. Tg, thapsigargin. (C) PLA performed on MEL624 cells treated for 30 minutes with DMSO or 10 μM PLX4720 and immunofluorescence for the ER resident protein disulfide isomerase (green), which reflects total ER area. Red fluorescence reflects a protein-protein interaction. Original magnification, ×40. Quantification of red, green, and yellow (colocalization) signals (mean ± SD) reflects at least 3 separate experiments.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts