Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Tgfbr2 disruption in postnatal smooth muscle impairs aortic wall homeostasis
Wei Li, … , Jay D. Humphrey, George Tellides
Wei Li, … , Jay D. Humphrey, George Tellides
Published January 9, 2014
Citation Information: J Clin Invest. 2014;124(2):755-767. https://doi.org/10.1172/JCI69942.
View: Text | PDF
Research Article Cardiology

Tgfbr2 disruption in postnatal smooth muscle impairs aortic wall homeostasis

  • Text
  • PDF
Abstract

TGF-β is essential for vascular development; however, excess TGF-β signaling promotes thoracic aortic aneurysm and dissection in multiple disorders, including Marfan syndrome. Since the pathology of TGF-β overactivity manifests primarily within the arterial media, it is widely assumed that suppression of TGF-β signaling in vascular smooth muscle cells will ameliorate aortic disease. We tested this hypothesis by conditional inactivation of Tgfbr2, which encodes the TGF-β type II receptor, in smooth muscle cells of postweanling mice. Surprisingly, the thoracic aorta rapidly thickened, dilated, and dissected in these animals. Tgfbr2 disruption predictably decreased canonical Smad signaling, but unexpectedly increased MAPK signaling. Type II receptor–independent effects of TGF-β and pathological responses by nonrecombined smooth muscle cells were excluded by serologic neutralization. Aortic disease was caused by a perturbed contractile apparatus in medial cells and growth factor production by adventitial cells, both of which resulted in maladaptive paracrine interactions between the vessel wall compartments. Treatment with rapamycin restored a quiescent smooth muscle phenotype and prevented dissection. Tgfbr2 disruption in smooth muscle cells also accelerated aneurysm growth in a murine model of Marfan syndrome. Our data indicate that basal TGF-β signaling in smooth muscle promotes postnatal aortic wall homeostasis and impedes disease progression.

Authors

Wei Li, Qingle Li, Yang Jiao, Lingfeng Qin, Rahmat Ali, Jing Zhou, Jacopo Ferruzzi, Richard W. Kim, Arnar Geirsson, Harry C. Dietz, Stefan Offermanns, Jay D. Humphrey, George Tellides

×

Figure 6

TβRII inactivation exacerbates mutant fibrillin-1–induced aortic disease.

Options: View larger image (or click on image) Download as PowerPoint
TβRII inactivation exacerbates mutant fibrillin-1–induced aortic disease...
(A) Gross appearance of thoracic aorta (arrow marks dissected aneurysm) in 8-week-old Fbn1C1039G/+.Myh11- CreERT2.Tgfbr2f/f mice treated with vehicle or tamoxifen for 5 days starting at 4 weeks of age. (B) Thoracic aortas of 30-week-old Myh11-CreERT2.Tgfbr2f/f (Cre.Tgfbr2) and Fbn1C1039G/+.Myh11- CreERT2.Tgfbr2f/f littermates treated with vehicle or tamoxifen. (C) Ascending aorta diameters by serial ultrasound imaging at 10, 20, and 30 weeks; n = 3–4. *P < 0.05, 1-way ANOVA. (D) Representative images of aortic root and ascending aorta diameters (blue lines) at 30 weeks. (E) Aortic dissection rates at 8 weeks; n = 0/20 (WT), 0/15 (mutant Fbn1), 15/32 (Tgfbr2 KO), and 20/22 (compound mutant). ***P < 0.001, χ2 test. (F) Immunoblotting for phosphorylated and total Smad2 in nondissected aortas at 5 weeks and (G) at 30 weeks. (H) PCR for deleted (del) vs. floxed (lox) Tgfbr2 and WT (+) vs. mutant (C1039G) Fbn1 in abdominal aorta specimens.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts