Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Harnessing the potential of epigenetic therapy to target solid tumors
Nita Ahuja, … , Hariharan Easwaran, Stephen B. Baylin
Nita Ahuja, … , Hariharan Easwaran, Stephen B. Baylin
Published January 2, 2014
Citation Information: J Clin Invest. 2014;124(1):56-63. https://doi.org/10.1172/JCI69736.
View: Text | PDF
Review Series

Harnessing the potential of epigenetic therapy to target solid tumors

  • Text
  • PDF
Abstract

Epigenetic therapies may play a prominent role in the future management of solid tumors. This possibility is based on the clinical efficacy of existing drugs in treating defined hematopoietic neoplasms, paired with promising new data from preclinical and clinical studies that examined these agents in solid tumors. We suggest that current drugs may represent a targeted therapeutic approach for reprogramming solid tumor cells, a strategy that must be pursued in concert with the explosion in knowledge about the molecular underpinnings of normal and cancer epigenomes. We hypothesize that understanding targeted proteins in the context of their enzymatic and scaffolding functions and in terms of their interactions in complexes with proteins that are targets of new drugs under development defines the future of epigenetic therapies for cancer.

Authors

Nita Ahuja, Hariharan Easwaran, Stephen B. Baylin

×

Figure 1

Various classes of epigenetic modifiers.

Options: View larger image (or click on image) Download as PowerPoint
Various classes of epigenetic modifiers.
The epigenetic machinery consis...
The epigenetic machinery consists of components that catalyze the covalent modifications of histone tails or the DNA (writers). These marks are interpreted by proteins (readers) that bind to the epigenetic marks, resulting in regulation of gene expression. Another class of proteins (erasers) reverses the epigenetic marks by catalyzing their removal. A class of protein complexes (movers) catalyzes the shifting of nucleosomes, resulting in a compact or relaxed chromatin. Here, the broad importance of these proteins in the context of gene silencing is shown. Writers acting separately on histones and DNA result in inactive histone modifications and CpG methylation. Erasers (such as LSD1) remove active histone modifications. Protein readers that bind to active histone (black lollipops) marks (e.g., bromodomain containing 4) are shown in green, those binding to inactive histone (white lollipops) marks (e.g., heterochromatin protein 1, chromobox homolog 7) are shown in pink, and those binding to methylated CpG (green lollipop denotes unmethylated CpG; red lollipop denotes methylated CpG) are shown in brown. The histone movers are shown to play a role in compacting chromatin. Once silenced, a gene will be maintained in the silenced state across cell divisions via recruitment of the writers in every cell cycle.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts