Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function
Madhusudhanan Sukumar, … , Nicholas P. Restifo, Luca Gattinoni
Madhusudhanan Sukumar, … , Nicholas P. Restifo, Luca Gattinoni
Published September 16, 2013
Citation Information: J Clin Invest. 2013;123(10):4479-4488. https://doi.org/10.1172/JCI69589.
View: Text | PDF
Research Article Oncology

Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function

  • Text
  • PDF
Abstract

Naive CD8+ T cells rely upon oxidation of fatty acids as a primary source of energy. After antigen encounter, T cells shift to a glycolytic metabolism to sustain effector function. It is unclear, however, whether changes in glucose metabolism ultimately influence the ability of activated T cells to become long-lived memory cells. We used a fluorescent glucose analog, 2-NBDG, to quantify glucose uptake in activated CD8+ T cells. We found that cells exhibiting limited glucose incorporation had a molecular profile characteristic of memory precursor cells and an increased capacity to enter the memory pool compared with cells taking up high amounts of glucose. Accordingly, enforcing glycolytic metabolism by overexpressing the glycolytic enzyme phosphoglycerate mutase-1 severely impaired the ability of CD8+ T cells to form long-term memory. Conversely, activation of CD8+ T cells in the presence of an inhibitor of glycolysis, 2-deoxyglucose, enhanced the generation of memory cells and antitumor functionality. Our data indicate that augmenting glycolytic flux drives CD8+ T cells toward a terminally differentiated state, while its inhibition preserves the formation of long-lived memory CD8+ T cells. These results have important implications for improving the efficacy of T cell–based therapies against chronic infectious diseases and cancer.

Authors

Madhusudhanan Sukumar, Jie Liu, Yun Ji, Murugan Subramanian, Joseph G. Crompton, Zhiya Yu, Rahul Roychoudhuri, Douglas C. Palmer, Pawel Muranski, Edward D. Karoly, Robert P. Mohney, Christopher A. Klebanoff, Ashish Lal, Toren Finkel, Nicholas P. Restifo, Luca Gattinoni

×

Figure 6

Blockade of glycolysis reprograms CD8+ T cell migration.

Options: View larger image (or click on image) Download as PowerPoint
Blockade of glycolysis reprograms CD8+ T cell migration.
 
(A) Immunoblo...
(A) Immunoblot analysis of phosphorylated Foxo1/3a proteins in pmel-1 CD8+ T cells 4 days after activation in the presence of 2DG or vehicle (culture media). Tubulin was used as a loading control. (B) Immunoblot analysis of Foxo1 protein in isolated fractions of CD8+ T cells activated for 24 hours in the presence of 2DG or vehicle. β-actin was used as a loading control. (C) Quantitative RT-PCR analysis of Klf2, S1p1r, Sell, and Ccr7 expression in pmel-1 CD8+ T cells as in A. Results are presented relative to Actb. Data are mean ± SEM of 3 measurements. (D and E) Flow cytometry analysis (D) and Ly5.1+Thy-1.1+/Thy-1.1+ ratio (E) of CD8+ T cells in the lymph nodes, spleen, and lungs 24 hours after adoptive transfer of 1:1 mix of 106 Ly5.1+Thy-1.1+ (2DG-treated) and Thy-1.1+ (vehicle) pmel-1 CD8+ T cells into wild-type mice. Flow cytometry in D is shown after gating on CD8+ cells. Numbers represent percent cells in the respective quadrants. Data in E are mean ± SEM. ***P < 0.001, ****P < 0.0001, 2-tailed Student’s t test. Data are representative of 3 (C) or 2 (A, B, D, and E) independent experiments.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts