Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
von Willebrand factor mutation promotes thrombocytopathy by inhibiting integrin αIIbβ3
Caterina Casari, … , Cécile V. Denis, Marijke Bryckaert
Caterina Casari, … , Cécile V. Denis, Marijke Bryckaert
Published November 25, 2013
Citation Information: J Clin Invest. 2013;123(12):5071-5081. https://doi.org/10.1172/JCI69458.
View: Text | PDF
Research Article

von Willebrand factor mutation promotes thrombocytopathy by inhibiting integrin αIIbβ3

  • Text
  • PDF
Abstract

von Willebrand disease type 2B (vWD-type 2B) is characterized by gain-of-function mutations in von Willebrand factor (vWF) that enhance its binding to the glycoprotein Ib-IX-V complex on platelets. Patients with vWD-type 2B have a bleeding tendency that is linked to loss of vWF multimers and/or thrombocytopenia. In this study, we uncovered evidence that platelet dysfunction is a third possible mechanism for bleeding tendency. We found that platelet aggregation, secretion, and spreading were diminished due to inhibition of integrin αIIbβ3 in platelets from mice expressing a vWD-type 2B–associated vWF (vWF/p.V1316M), platelets from a patient with the same mutation, and control platelets pretreated with recombinant vWF/p.V1316M. Impaired platelet function coincided with reduced thrombus growth. Further, αIIbβ3 activation and activation of the small GTPase Rap1 were impaired by vWF/p.V1316M following exposure to platelet agonists (thrombin, ADP, or convulxin). Conversely, thrombin- or ADP-induced Ca2+ store release, which is required for αIIbβ3 activation, was normal, indicating that vWF/p.V1316M acts downstream of Ca2+ release and upstream of Rap1. We found normal Syk phosphorylation and PLCγ2 activation following collagen receptor signaling, further implying that vWF/p.V1316M acts directly on or downstream of Ca2+ release. These data indicate that the vWD-type 2B mutation p.V1316M is associated with severe thrombocytopathy, which likely contributes to the bleeding tendency in vWD-type 2B.

Authors

Caterina Casari, Eliane Berrou, Marilyne Lebret, Frédéric Adam, Alexandre Kauskot, Régis Bobe, Céline Desconclois, Edith Fressinaud, Olivier D. Christophe, Peter J. Lenting, Jean-Philippe Rosa, Cécile V. Denis, Marijke Bryckaert

×

Figure 6

Thrombus formation in the patient with vWD-type 2B.

Options: View larger image (or click on image) Download as PowerPoint
Thrombus formation in the patient with vWD-type 2B.
Whole blood was perf...
Whole blood was perfused at (A) 300 s–1 or (B) 1,500 s–1 in glass microcapillary tubes coated with type I collagen (100 μg/ml). After 5 minutes (300 s–1) and 2 minutes (1,500 s–1), platelet thrombi were observed under an epifluorescence microscope (original magnification, ×20). Total area covered by platelets and total integrated fluorescence intensity (IFI) from 1 experiment carried out in triplicate are presented as the mean ± SEM. ***P < 0.001 (unpaired Student’s t test). Results are representative of 2 independent experiments.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts