Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Perturbation of NK cell peripheral homeostasis accelerates prostate carcinoma metastasis
Gang Liu, … , Zihai Li, Jennifer D. Wu
Gang Liu, … , Zihai Li, Jennifer D. Wu
Published September 9, 2013
Citation Information: J Clin Invest. 2013;123(10):4410-4422. https://doi.org/10.1172/JCI69369.
View: Text | PDF
Research Article Oncology

Perturbation of NK cell peripheral homeostasis accelerates prostate carcinoma metastasis

  • Text
  • PDF
Abstract

The activating receptor NK cell group 2 member D (NKG2D) mediates antitumor immunity in experimental animal models. However, whether NKG2D ligands contribute to tumor suppression or progression clinically remains controversial. Here, we have described 2 novel lines of “humanized” bi-transgenic (bi-Tg) mice in which native human NKG2D ligand MHC class I polypeptide-related sequence B (MICB) or the engineered membrane-restricted MICB (MICB.A2) was expressed in the prostate of the transgenic adenocarcinoma of the mouse prostate (TRAMP) model of spontaneous carcinogenesis. Bi-Tg TRAMP/MICB mice exhibited a markedly increased incidence of progressed carcinomas and metastasis, whereas TRAMP/MICB.A2 mice enjoyed long-term tumor-free survival conferred by sustained NKG2D-mediated antitumor immunity. Mechanistically, we found that cancer progression in TRAMP/MICB mice was associated with loss of the peripheral NK cell pool owing to high serum levels of tumor-derived soluble MICB (sMICB). Prostate cancer patients also displayed reduction of peripheral NK cells and high sMIC levels. Our study has not only provided direct evidence in “humanized” mouse models that soluble and membrane-restricted NKG2D ligands pose opposite impacts on cancer progression, but also uncovered a mechanism of sMIC-induced impairment of NK cell antitumor immunity. Our findings suggest that the impact of soluble NKG2D ligands should be considered in NK cell–based cancer immunotherapy and that our unique mouse models should be valuable for therapy optimization.

Authors

Gang Liu, Shengjun Lu, Xuanjun Wang, Stephanie T. Page, Celestia S. Higano, Stephen R. Plymate, Norman M. Greenberg, Shaoli Sun, Zihai Li, Jennifer D. Wu

×

Figure 5

sMICB perturbs NK cell proliferation in metastatic TRAMP-C2-sMICB mice.

Options: View larger image (or click on image) Download as PowerPoint
sMICB perturbs NK cell proliferation in metastatic TRAMP-C2-sMICB mice.
...
1 × 107 V450-labeled CD45.1+ congenic splenocytes were transferred into CD45.2+ mice that were implanted with TRAMP-C2-sMICB or into TRAMP-C2 mice. These mice were treated with sMICB-neutralizing antibody or control IgG before and after receiving CD45.1+ congenic splenocytes. Mice were euthanized 5 days after congenic transfer. (A and B) Percentage of CD45.1+ NK cells in the total CD45.1+ population in the spleen (A) and LNs (B). (C and D) summary of V450 dilution assay indicating that sMICB perturbs congenic CD45.1+ NK cell proliferation in the spleen (C) and LNs (B). 5–8 animals were used in each group. Data represent 3 independent experiments.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts