Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Nervous glucose sensing regulates postnatal β cell proliferation and glucose homeostasis
David Tarussio, … , Marc Foretz, Bernard Thorens
David Tarussio, … , Marc Foretz, Bernard Thorens
Published December 16, 2013
Citation Information: J Clin Invest. 2014;124(1):413-424. https://doi.org/10.1172/JCI69154.
View: Text | PDF
Research Article Metabolism

Nervous glucose sensing regulates postnatal β cell proliferation and glucose homeostasis

  • Text
  • PDF
Abstract

How glucose sensing by the nervous system impacts the regulation of β cell mass and function during postnatal development and throughout adulthood is incompletely understood. Here, we studied mice with inactivation of glucose transporter 2 (Glut2) in the nervous system (NG2KO mice). These mice displayed normal energy homeostasis but developed late-onset glucose intolerance due to reduced insulin secretion, which was precipitated by high-fat diet feeding. The β cell mass of adult NG2KO mice was reduced compared with that of WT mice due to lower β cell proliferation rates in NG2KO mice during the early postnatal period. The difference in proliferation between NG2KO and control islets was abolished by ganglionic blockade or by weaning the mice on a carbohydrate-free diet. In adult NG2KO mice, first-phase insulin secretion was lost, and these glucose-intolerant mice developed impaired glucagon secretion when fed a high-fat diet. Electrophysiological recordings showed reduced parasympathetic nerve activity in the basal state and no stimulation by glucose. Furthermore, sympathetic activity was also insensitive to glucose. Collectively, our data show that GLUT2-dependent control of parasympathetic activity defines a nervous system/endocrine pancreas axis that is critical for β cell mass establishment in the postnatal period and for long-term maintenance of β cell function.

Authors

David Tarussio, Salima Metref, Pascal Seyer, Lourdes Mounien, David Vallois, Christophe Magnan, Marc Foretz, Bernard Thorens

×

Figure 1

Glut2 inactivation in the nervous system of NG2KO mice.

Options: View larger image (or click on image) Download as PowerPoint

Glut2 inactivation in the nervous system of NG2KO mice.
 
(A) qRT-PCR a...
(A) qRT-PCR analysis of Glut2 expression in the hypothalamus, brain stem, and cortex of control and NG2KO mice. Data are mean ± SEM; n = 3. (B and C) Immunofluorescence detection of GLUT2 in the brain stem of control and NG2KO mice. The section were cut at bregma –7.2. Ctrl, control; 12N, hypoglossal nucleus; Gi, gigantocellular reticular nucleus; IRT, intermediate reticular nucleus; PCRt, parvicellular reticular nucleus. Inset: Higher magnification of two neurons showing mostly plasma membrane–associated GLUT2 expression. (D and E) Immunofluorescence detection of GLUT2 in the hypothalamus of control and NG2KO mice. The sections were cut at bregma –1.34. LH, lateral hypothalamus. Arrowheads indicate GLUT2-positive cells. (F–H) Costaining for GLUT2 (red) and NeuN (green) in the brain stem (same region as in B and C) of control mice; arrowheads indicate costained neurons. (I) Immunofluorescence detection of GLUT2 in islets of 24 week-old WT, Glut2lox/lox, and NG2KO mice. Scale bars: 200 μm (B and C); 100 μm (D–H); 50 μm (I).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts