Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury
Pinelopi P. Kapitsinou, … , Timothy A. Sutton, Volker H. Haase
Pinelopi P. Kapitsinou, … , Timothy A. Sutton, Volker H. Haase
Published May 1, 2014
Citation Information: J Clin Invest. 2014;124(6):2396-2409. https://doi.org/10.1172/JCI69073.
View: Text | PDF
Research Article Nephrology

Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury

  • Text
  • PDF
Abstract

The hypoxia-inducible transcription factors HIF-1 and HIF-2 mediate key cellular adaptions to hypoxia and contribute to renal homeostasis and pathophysiology; however, little is known about the cell type–specific functions of HIF-1 and HIF-2 in response to ischemic kidney injury. Here, we used a genetic approach to specifically dissect the roles of endothelial HIF-1 and HIF-2 in murine models of hypoxic kidney injury induced by ischemia reperfusion or ureteral obstruction. In both models, inactivation of endothelial HIF increased injury-associated renal inflammation and fibrosis. Specifically, inactivation of endothelial HIF-2α, but not endothelial HIF-1α, resulted in increased expression of renal injury markers and inflammatory cell infiltration in the postischemic kidney, which was reversed by blockade of vascular cell adhesion molecule-1 (VCAM1) and very late antigen-4 (VLA4) using monoclonal antibodies. In contrast, pharmacologic or genetic activation of HIF via HIF prolyl-hydroxylase inhibition protected wild-type animals from ischemic kidney injury and inflammation; however, these same protective effects were not observed in HIF prolyl-hydroxylase inhibitor–treated animals lacking endothelial HIF-2. Taken together, our data indicate that endothelial HIF-2 protects from hypoxia-induced renal damage and represents a potential therapeutic target for renoprotection and prevention of fibrosis following acute ischemic injury.

Authors

Pinelopi P. Kapitsinou, Hideto Sano, Mark Michael, Hanako Kobayashi, Olena Davidoff, Aihua Bian, Bing Yao, Ming-Zhi Zhang, Raymond C. Harris, Kevin J. Duffy, Connie L. Erickson-Miller, Timothy A. Sutton, Volker H. Haase

×

Figure 3

Endothelial HIF promotes recovery from renal IRI.

Options: View larger image (or click on image) Download as PowerPoint
Endothelial HIF promotes recovery from renal IRI.
(A) Schematic illustra...
(A) Schematic illustration of injury model and representative images of H&E-stained sections of injured kidneys from Hif1aHif2a–/– mutants and Cre– littermate controls at 2 hours, 1 day, and 3 days following unilateral IRI. Arrows point to necrotic tubules; asterisks indicate tubules with cast-forming material. (B) Left panel: time course analysis of Kim1 mRNA levels in injured kidneys. Right panel: mRNA levels of Kim1 in injured and contralateral kidneys at day 3 after IRI (n = 5–6). (C) BUN levels at day 1 and 3 following bilateral renal IRI in Hif1aHif2a–/– and controls (n = 6–14). Graph bars represent mean values ± SEM; *P < 0.05. IR, kidney subjected to unilateral renal ischemia-reperfusion. Scale bars: 100 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts