Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Glucagon regulates gluconeogenesis through KAT2B- and WDR5-mediated epigenetic effects
Kim Ravnskjaer, … , Jerrold Olefsky, Marc Montminy
Kim Ravnskjaer, … , Jerrold Olefsky, Marc Montminy
Published September 24, 2013
Citation Information: J Clin Invest. 2013;123(10):4318-4328. https://doi.org/10.1172/JCI69035.
View: Text | PDF
Research Article Metabolism

Glucagon regulates gluconeogenesis through KAT2B- and WDR5-mediated epigenetic effects

  • Text
  • PDF
Abstract

Circulating pancreatic glucagon is increased during fasting and maintains glucose balance by stimulating hepatic gluconeogenesis. Glucagon triggering of the cAMP pathway upregulates the gluconeogenic program through the phosphorylation of cAMP response element–binding protein (CREB) and the dephosphorylation of the CREB coactivator CRTC2. Hormonal and nutrient signals are also thought to modulate gluconeogenic gene expression by promoting epigenetic changes that facilitate assembly of the transcriptional machinery. However, the nature of these modifications is unclear. Using mouse models and in vitro assays, we show that histone H3 acetylation at Lys 9 (H3K9Ac) was elevated over gluconeogenic genes and contributed to increased hepatic glucose production during fasting and in diabetes. Dephosphorylation of CRTC2 promoted increased H3K9Ac through recruitment of the lysine acetyltransferase 2B (KAT2B) and WD repeat–containing protein 5 (WDR5), a core subunit of histone methyltransferase (HMT) complexes. KAT2B and WDR5 stimulated the gluconeogenic program through a self-reinforcing cycle, whereby increases in H3K9Ac further potentiated CRTC2 occupancy at CREB binding sites. Depletion of KAT2B or WDR5 decreased gluconeogenic gene expression, consequently breaking the cycle. Administration of a small-molecule KAT2B antagonist lowered circulating blood glucose concentrations in insulin resistance, suggesting that this enzyme may be a useful target for diabetes treatment.

Authors

Kim Ravnskjaer, Meghan F. Hogan, Denise Lackey, Laszlo Tora, Sharon Y.R. Dent, Jerrold Olefsky, Marc Montminy

×

Figure 3

WDR5 promotes H3K9 acetylation and gluconeogenic gene expression through direct association with KAT2B.

Options: View larger image (or click on image) Download as PowerPoint
WDR5 promotes H3K9 acetylation and gluconeogenic gene expression through...
(A) Relative effects of Wdr5 (W5), Ash2l (A2), and Rbbp5 (R5) knockdown on gluconeogenic gene expression as well as H3K9Ac and H3K4me3 amounts over gluconeogenic genes in primary hepatocytes exposed to glucagon. H3K9Ac and H3K4me3 signals were normalized to total histone H3. (B) Immunoblot showing relative effects of Wdr5, Ash2l, and Rbbp5 RNAis on H3K9 acetylation and H3K4 methylation in hepatocytes. (C) Effect of RNAi-mediated depletion of Wdr5 on glucagon-induced recruitment of POLR2A, CRTC2, pCREB (Ser133), KAT2B, and WDR5 over CREB binding sites in the Pck1 and G6pc promoters in hepatocytes (*P < 0.05 relative to NS RNAi; n = 3). (D) Microarray data showing fractions of all genes and glucagon-induced (>2-fold) genes that are reduced (>25%) by depletion of Wdr5, Kat2b, or by depletion of either Wdr5 or Kat2b in hepatocytes (number of genes is indicated). List of glucagon-induced genes and their reduction upon Kat2b depletion. Hypergeometric distribution showing a strong overrepresentation of glucagon-induced genes among genes reduced by Kat2b depletion.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts