Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Menin determines K-RAS proliferative outputs in endocrine cells
Chester E. Chamberlain, David W. Scheel, Kathleen McGlynn, Hail Kim, Takeshi Miyatsuka, Juehu Wang, Vinh Nguyen, Shuhong Zhao, Anastasia Mavropoulos, Aswin G. Abraham, Eric O’Neill, Gregory M. Ku, Melanie H. Cobb, Gail R. Martin, Michael S. German
Chester E. Chamberlain, David W. Scheel, Kathleen McGlynn, Hail Kim, Takeshi Miyatsuka, Juehu Wang, Vinh Nguyen, Shuhong Zhao, Anastasia Mavropoulos, Aswin G. Abraham, Eric O’Neill, Gregory M. Ku, Melanie H. Cobb, Gail R. Martin, Michael S. German
View: Text | PDF
Research Article

Menin determines K-RAS proliferative outputs in endocrine cells

  • Text
  • PDF
Abstract

Endocrine cell proliferation fluctuates dramatically in response to signals that communicate hormone demand. The genetic alterations that override these controls in endocrine tumors often are not associated with oncogenes common to other tumor types, suggesting that unique pathways govern endocrine proliferation. Within the pancreas, for example, activating mutations of the prototypical oncogene KRAS drive proliferation in all pancreatic ductal adenocarcimomas but are never found in pancreatic endocrine tumors. Therefore, we asked how cellular context impacts K-RAS signaling. We found that K-RAS paradoxically suppressed, rather than promoted, growth in pancreatic endocrine cells. Inhibition of proliferation by K-RAS depended on antiproliferative RAS effector RASSF1A and blockade of the RAS-activated proproliferative RAF/MAPK pathway by tumor suppressor menin. Consistent with this model, a glucagon-like peptide 1 (GLP1) agonist, which stimulates ERK1/2 phosphorylation, did not affect endocrine cell proliferation by itself, but synergistically enhanced proliferation when combined with a menin inhibitor. In contrast, inhibition of MAPK signaling created a synthetic lethal interaction in the setting of menin loss. These insights suggest potential strategies both for regenerating pancreatic β cells for people with diabetes and for targeting menin-sensitive endocrine tumors.

Authors

Chester E. Chamberlain, David W. Scheel, Kathleen McGlynn, Hail Kim, Takeshi Miyatsuka, Juehu Wang, Vinh Nguyen, Shuhong Zhao, Anastasia Mavropoulos, Aswin G. Abraham, Eric O’Neill, Gregory M. Ku, Melanie H. Cobb, Gail R. Martin, Michael S. German

×

Figure 4

Endocrine proliferation in menin-sensitive tissues.

Options: View larger image (or click on image) Download as PowerPoint
Endocrine proliferation in menin-sensitive tissues.
(A and B) Ventral vi...
(A and B) Ventral views of microdissected tissue from P5 neonates show the trachea (Tr), thyroid (Th), and parathyroid (Pa, outlined by intercalated black melanocytes). (C and D) Sections from P5 parathyroid glands were immunostained for the endocrine marker chromogranin A and p-H3. (E and F) Sections from P5 pituitary glands were immunostained for prolactin and p-H3. Proliferating lactotrophs are indicated with white arrows. (G) Normalized proliferation rates of the indicated cell types from P5 embryos were assessed by p-H3 staining (n = 6 Kras WT, n = 6 Kras-het, >6,000 chief cells, >3,000 lactotrophs, >14,000 thyroid follicular cells counted in total). (H) The percentage of β cells expressing the proliferation marker p-H3 was quantified in pancreata from P5 neonatal mice of the indicated genotypes (n = 4–5 for all genotypes, >34,000 β cells counted in total). All data points represent the mean ± SEM. *P < 0.05, **P < 0.01 versus control (G) or for the comparisons indicated by 2-tailed Student’s t test. Scale bars: 50 μm.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts