Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Serum IgE clearance is facilitated by human FcεRI internalization
Alexandra M. Greer, … , Jean-Pierre Kinet, Jeoung-Sook Shin
Alexandra M. Greer, … , Jean-Pierre Kinet, Jeoung-Sook Shin
Published February 24, 2014
Citation Information: J Clin Invest. 2014;124(3):1187-1198. https://doi.org/10.1172/JCI68964.
View: Text | PDF
Research Article Immunology

Serum IgE clearance is facilitated by human FcεRI internalization

  • Text
  • PDF
Abstract

The high-affinity IgE receptor FcεRI is constitutively expressed in mast cells and basophils and is required for transmitting stimulatory signals upon engagement of IgE-bound allergens. FcεRI is also constitutively expressed in dendritic cells (DCs) and monocytes in humans; however, the specific functions of the FcεRI expressed by these cells are not completely understood. Here, we found that FcεRI expressed by human blood DC antigen 1–positive (BDCA1+) DCs and monocytes, but not basophils, traffics to endolysosomal compartments under steady-state conditions. Furthermore, IgE bound to FcεRI on BDCA1+ DCs was rapidly endocytosed, transported to the lysosomes, and degraded in vitro. IgE injected into mice expressing human FcεRIα (FCER1A-Tg mice) was endocytosed by conventional DCs and monocytes, and endocytosis was associated with rapid clearance of circulating IgE from these mice. Importantly, this rapid IgE clearance was dependent on monocytes or DCs but not basophils. These findings strongly suggest that constitutive internalization of human FcεRI by DCs and monocytes distinctively contributes to serum IgE clearance.

Authors

Alexandra M. Greer, Nan Wu, Amy L. Putnam, Prescott G. Woodruff, Paul Wolters, Jean-Pierre Kinet, Jeoung-Sook Shin

×

Figure 4

IgE internalized by DCs is delivered to the lysosomes and degraded.

Options: View larger image (or click on image) Download as PowerPoint
IgE internalized by DCs is delivered to the lysosomes and degraded.
(A) ...
(A) IgE traffics to lysosomes after entering DCs. DCs were incubated with 0.5 μg/ml hIgE-A647 for 4 hours before preparation for confocal microscopy. Data are representative of 17 images from two unique and representative donors. Original magnification, ×60; scale bars: 2.5 μm. (B) Effect of chloroquine on the intracellular IgE pool determined by confocal microscopy. DCs and basophils were incubated for 8 hours at 37°C with or without 0.5 μM chloroquine (Chlor) and stained with anti-IgE antibody before confocal microscopy. On each confocal micrograph, intracellular and cell membrane (extracellular) regions were identified manually (shown on the left; scale bar: 2.5 μm), fluorescence density was measured, and the signal ratio of intracellular to extracellular regions was determined. Shown are summarized data from 30 cells of each type in each condition for 2 donors. Data represent mean ± SEM and *P < 0.005. (C) Effect of chloroquine on intracellular IgE pool determined by flow cytometry. Basophils and DCs were incubated for 8 hours at 37°C with or without 2 mM chloroquine and washed with acid or PBS. The acid-resistant IgE fraction was determined by staining cells with anti-IgE after permeabilization and dividing the MFI of acid-washed cells by the MFI of unwashed cells as described for Figure 3B. Data are from 4 representative donors.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts